

SECOND EDITION

Windows PowerShell
Pocket Reference

Lee Holmes

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Windows PowerShell Pocket Reference, Second Edition
by Lee Holmes

Copyright © 2013 Lee Holmes. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo-
tional use. Online editions are also available for most titles (http://my.safari
booksonline.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis
Copyeditor: Rachel Monaghan
Production Editor: Christopher Hearse
Proofreader: Mary Ellen Smith
Indexer: Margaret Troutman
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

December 2012: Second Edition.

Revision History for the Second Edition:
2012-12-07 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449320966 for release de-
tails.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. Windows PowerShell Pocket
Reference, the image of a box turtle, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and authors assume no responsibility for errors or omissions, or
for damages resulting from the use of the information contained herein.

ISBN: 978-1-449-32096-6

[M]

1354853082

http://my.safaribooksonline.com/?portal=oreilly
http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449320966

Contents

Preface v

A Guided Tour of Windows PowerShell ix

Chapter 1: PowerShell Language and Environment 1
Commands and Expressions 1
Comments 2
Help Comments 3
Variables 5
Booleans 6
Strings 7
Numbers 9
Arrays and Lists 12
Hashtables (Associative Arrays) 15
XML 16
Simple Operators 17
Comparison Operators 26
Conditional Statements 30
Looping Statements 34
Working with the .NET Framework 42
Writing Scripts, Reusing Functionality 50
Managing Errors 66

iii

Formatting Output 69
Capturing Output 71
Common Customization Points 72

Chapter 2: Regular Expression Reference 79

Chapter 3: XPath Quick Reference 91

Chapter 4: .NET String Formatting 95
String Formatting Syntax 95
Standard Numeric Format Strings 96
Custom Numeric Format Strings 98

Chapter 5: .NET DateTime Formatting 101
Custom DateTime Format Strings 103

Chapter 6: Selected .NET Classes and Their Uses 109

Chapter 7: WMI Reference 119

Chapter 8: Selected COM Objects and Their Uses 129

Chapter 9: Selected Events and Their Uses 133

Chapter 10: Standard PowerShell Verbs 145

Index 153

iv | Table of Contents

Preface

Windows PowerShell introduces a revolution to the world of
system management and command-line shells. From its object-
based pipelines, to its administrator focus, to its enormous
reach into other Microsoft management technologies, Power-
Shell drastically improves the productivity of administrators
and power-users alike.

Much of this power comes from providing access to powerful
technologies: an expressive scripting language, regular expres-
sions, the .NET Framework, Windows Management Instru-
mentation (WMI), COM, the Windows registry, and much
more.

Although help for these technologies is independently avail-
able, it is scattered, unfocused, and buried among documen-
tation intended for a developer audience.

To solve that problem, this Pocket Reference summarizes the
Windows PowerShell command shell and scripting language,
while also providing a concise reference for the major tasks that
make it so successful.

Conventions Used in This Book
The following typographical conventions are used in this book:

v

Italic
Indicates new terms, URLs, email addresses, filenames,
and file extensions.

Constant width
Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed lit-
erally by the user.

Constant width italic
Shows text that should be replaced with user-supplied
values or by values determined by context.

TIP
This icon signifies a tip, suggestion, or general note.

CAUTION
This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if
this book includes code examples, you may use the code in
your programs and documentation. You do not need to contact
us for permission unless you’re reproducing a significant por-
tion of the code. For example, writing a program that uses sev-
eral chunks of code from this book does not require permis-
sion. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question
by citing this book and quoting example code does not require
permission. Incorporating a significant amount of example

vi | Preface

code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For ex-
ample: “Windows PowerShell Pocket Reference, Second
Edition, by Lee Holmes. Copyright 2013 Lee Holmes,
978-1-449-32096-6.”

If you feel your use of code examples falls outside fair use or
the permission given above, feel free to contact us at
permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribookson
line.com) is an on-demand digital library that
delivers expert content in both book and video
form from the world’s leading authors in tech-
nology and business.

Technology professionals, software developers, web designers,
and business and creative professionals use Safari Books On-
line as their primary resource for research, problem solving,
learning, and certification training.

Safari Books Online offers a range of product mixes and pricing
programs for organizations, government agencies, and indi-
viduals. Subscribers have access to thousands of books, train-
ing videos, and prepublication manuscripts in one fully search-
able database from publishers like O’Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft
Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Red-
books, Packt, Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, Course Technology,
and dozens more. For more information about Safari Books
Online, please visit us online.

Preface | vii

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

How to Contact Us
Please address comments and questions concerning this book
to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, exam-
ples, and any additional information. You can access this page
at http://oreil.ly/windows-powershell-pocket-e2.

To comment or ask technical questions about this book, send
email to bookquestions@oreilly.com.

For more information about our books, courses, conferences,
and news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

viii | Preface

http://oreil.ly/windows-powershell-pocket-e2
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

A Guided Tour of Windows
PowerShell

Introduction
Windows PowerShell promises to revolutionize the world of
system management and command-line shells. From its object-
based pipelines to its administrator focus to its enormous reach
into other Microsoft management technologies, PowerShell
drastically improves the productivity of administrators and
power users alike.

When you’re learning a new technology, it is natural to feel
bewildered at first by all the unfamiliar features and function-
ality. This perhaps rings especially true for users new to Win-
dows PowerShell because it may be their first experience with
a fully featured command-line shell. Or worse, they’ve heard
stories of PowerShell’s fantastic integrated scripting capabili-
ties and fear being forced into a world of programming that
they’ve actively avoided until now.

Fortunately, these fears are entirely misguided; PowerShell is
a shell that both grows with you and grows on you. Let’s take
a tour to see what it is capable of:

• PowerShell works with standard Windows commands
and applications. You don’t have to throw away what you
already know and use.

ix

• PowerShell introduces a powerful new type of command.
PowerShell commands (called cmdlets) share a common
Verb-Noun syntax and offer many usability improvements
over standard commands.

• PowerShell understands objects. Working directly with
richly structured objects makes working with (and com-
bining) PowerShell commands immensely easier than
working in the plain-text world of traditional shells.

• PowerShell caters to administrators. Even with all its ad-
vances, PowerShell focuses strongly on its use as an inter-
active shell: the experience of entering commands in a
running PowerShell application.

• PowerShell supports discovery. Using three simple com-
mands, you can learn and discover almost anything
PowerShell has to offer.

• PowerShell enables ubiquitous scripting. With a fully
fledged scripting language that works directly from the
command line, PowerShell lets you automate tasks with
ease.

• PowerShell bridges many technologies. By letting you
work with .NET, COM, WMI, XML, and Active Direc-
tory, PowerShell makes working with these previously
isolated technologies easier than ever before.

• PowerShell simplifies management of datastores.
Through its provider model, PowerShell lets you manage
datastores using the same techniques you already use to
manage files and folders.

We’ll explore each of these pillars in this introductory tour of
PowerShell. If you are running Windows 7 (or later) or Win-
dows 2008 R2 (or later), PowerShell is already installed. If not,
visit the download link to install it. PowerShell and its sup-
porting technologies are together referred to as the Windows
Management Framework.

x | A Guided Tour of Windows PowerShell

http://www.microsoft.com/PowerShell

An Interactive Shell
At its core, PowerShell is first and foremost an interactive shell.
While it supports scripting and other powerful features, its fo-
cus as a shell underpins everything.

Getting started in PowerShell is a simple matter of launching
PowerShell.exe rather than cmd.exe—the shells begin to di-
verge as you explore the intermediate and advanced function-
ality, but you can be productive in PowerShell immediately.

To launch Windows PowerShell, do one of the following:

• Click Start→All Programs→Accessories→Windows
PowerShell

• Click Start→Run, and then type PowerShell

A PowerShell prompt window opens that’s nearly identical to
the traditional command prompt window of Windows XP,
Windows Server 2003, and their many ancestors. The PS C:
\Users\Lee> prompt indicates that PowerShell is ready for in-
put, as shown in Figure I-1.

Once you’ve launched your PowerShell prompt, you can enter
DOS-style and Unix-style commands to navigate around the
filesystem just as you would with any Windows or Unix com-
mand prompt—as in the interactive session shown in Exam-
ple I-1. In this example, we use the pushd, cd, dir, pwd, and
popd commands to store the current location, navigate around
the filesystem, list items in the current directory, and then re-
turn to the original location. Try it!

Example I-1. Entering many standard DOS- and Unix-style file
manipulation commands produces the same results you get when you
use them with any other Windows shell

PS C:\Documents and Settings\Lee> function Prompt { "PS > " }
PS > pushd .
PS > cd \
PS > dir

 Directory: C:\

A Guided Tour of Windows PowerShell | xi

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 11/2/2006 4:36 AM $WINDOWS.~BT
d---- 5/8/2007 8:37 PM Blurpark
d---- 11/29/2006 2:47 PM Boot
d---- 11/28/2006 2:10 PM DECCHECK
d---- 10/7/2006 4:30 PM Documents and Settings
d---- 5/21/2007 6:02 PM F&SC-demo
d---- 4/2/2007 7:21 PM Inetpub
d---- 5/20/2007 4:59 PM Program Files
d---- 5/21/2007 7:26 PM temp
d---- 5/21/2007 8:55 PM Windows
-a--- 1/7/2006 10:37 PM 0 autoexec.bat
-ar-s 11/29/2006 1:39 PM 8192 BOOTSECT.BAK
-a--- 1/7/2006 10:37 PM 0 config.sys
-a--- 5/1/2007 8:43 PM 33057 RUU.log
-a--- 4/2/2007 7:46 PM 2487 secedit.INTEG.RAW

PS > popd
PS > pwd

Path

C:\Documents and Settings\Lee

Figure I-1. Windows PowerShell, ready for input

xii | A Guided Tour of Windows PowerShell

In this example, our first command customizes the prompt. In
cmd.exe, customizing the prompt looks like prompt PG. In
bash, it looks like PS1="[\h] \w> ". In PowerShell, you define
a function that returns whatever you want displayed.

The pushd command is an alternative name (alias) to the much
more descriptively named PowerShell command
Push-Location. Likewise, the cd, dir, popd, and pwd commands
all have more memorable counterparts.

Although navigating around the filesystem is helpful, so is run-
ning the tools you know and love, such as ipconfig and
notepad. Type the command name and you’ll see results like
those shown in Example I-2.

Example I-2. Windows tools and applications such as ipconfig run in
PowerShell just as they do in cmd.exe

PS > ipconfig
Windows IP Configuration

Ethernet adapter Wireless Network Connection 4:

 Connection-specific DNS Suffix . : hsd1.wa.comcast.net.
 IP Address. : 192.168.1.100
 Subnet Mask : 255.255.255.0
 Default Gateway : 192.168.1.1
PS > notepad
(notepad launches)

Entering ipconfig displays the IP addresses of your current
network connections. Entering notepad runs—as you’d expect
—the Notepad editor that ships with Windows. Try them both
on your own machine.

Structured Commands (Cmdlets)
In addition to supporting traditional Windows executables,
PowerShell introduces a powerful new type of command called
a cmdlet (pronounced “command-let”). All cmdlets are named

A Guided Tour of Windows PowerShell | xiii

in a Verb-Noun pattern, such as Get-Process, Get-Content, and
Stop-Process.

PS > Get-Process -Name lsass
Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 668 13 6228 1660 46 932 lsass

In this example, you provide a value to the ProcessName pa-
rameter to get a specific process by name.

NOTE
Once you know the handful of common verbs in Pow-
erShell, learning how to work with new nouns becomes
much easier. While you may never have worked with a
certain object before (such as a Service), the standard
Get, Set, Start, and Stop actions still apply. For a list of
these common verbs, see Table 10-1 in Chapter 10.

You don’t always have to type these full cmdlet names, how-
ever. PowerShell lets you use the Tab key to autocomplete
cmdlet names and parameter names:

PS > Get-Pr<TAB> -N<TAB> lsass

For quick interactive use, even that may be too much typing.
To help improve your efficiency, PowerShell defines aliases for
all common commands and lets you define your own. In ad-
dition to alias names, PowerShell requires only that you type
enough of the parameter name to disambiguate it from the rest
of the parameters in that cmdlet. PowerShell is also case-
insensitive. Using the built-in gps alias (which represents the
Get-Process cmdlet) along with parameter shortening, you can
instead type:

PS > gps -n lsass

Going even further, PowerShell supports positional parame-
ters on cmdlets. Positional parameters let you provide param-
eter values in a certain position on the command line, rather
than having to specify them by name. The Get-Process cmdlet

xiv | A Guided Tour of Windows PowerShell

takes a process name as its first positional parameter. This pa-
rameter even supports wildcards:

PS > gps l*s

Deep Integration of Objects
PowerShell begins to flex more of its muscle as you explore the
way it handles structured data and richly functional objects.
For example, the following command generates a simple text
string. Since nothing captures that output, PowerShell displays
it to you:

PS > "Hello World"
Hello World

The string you just generated is, in fact, a fully functional object
from the .NET Framework. For example, you can access its
Length property, which tells you how many characters are in
the string. To access a property, you place a dot between the
object and its property name:

PS > "Hello World".Length
11

All PowerShell commands that produce output generate that
output as objects as well. For example, the Get-Process cmdlet
generates a System.Diagnostics.Process object, which you can
store in a variable. In PowerShell, variable names start with a
$ character. If you have an instance of Notepad running, the
following command stores a reference to it:

$process = Get-Process notepad

Since this is a fully functional Process object from the .NET
Framework, you can call methods on that object to perform
actions on it. This command calls the Kill() method, which
stops a process. To access a method, you place a dot between
the object and its method name:

$process.Kill()

PowerShell supports this functionality more directly through
the Stop-Process cmdlet, but this example demonstrates an

A Guided Tour of Windows PowerShell | xv

important point about your ability to interact with these rich
objects.

Administrators as First-Class Users
While PowerShell’s support for objects from the .NET Frame-
work quickens the pulse of most users, PowerShell continues
to focus strongly on administrative tasks. For example, Pow-
erShell supports MB (for megabyte) and GB (for gigabyte) as some
of its standard administrative constants. For example, how
many disks will it take to back up a 40 GB hard drive to CD-
ROM?

PS > 40GB / 650MB
63.0153846153846

Although the .NET Framework is traditionally a development
platform, it contains a wealth of functionality useful for ad-
ministrators too! In fact, it makes PowerShell a great calendar.
For example, is 2008 a leap year? PowerShell can tell you:

PS > [DateTime]::IsLeapYear(2008)
True

Going further, how might you determine how much time re-
mains until summer? The following command converts
"06/21/2011" (the start of summer) to a date, and then subtracts
the current date from that. It stores the result in the $result
variable, and then accesses the TotalDays property.

PS > $result = [DateTime] "06/21/2011" - [DateTime]::Now
PS > $result.TotalDays
283.0549285662616

Composable Commands
Whenever a command generates output, you can use a pipeline
character (|) to pass that output directly to another command
as input. If the second command understands the objects pro-
duced by the first command, it can operate on the results. You
can chain together many commands this way, creating pow-

xvi | A Guided Tour of Windows PowerShell

erful compositions out of a few simple operations. For exam-
ple, the following command gets all items in the Path1 direc-
tory and moves them to the Path2 directory:

Get-Item Path1* | Move-Item -Destination Path2

You can create even more complex commands by adding ad-
ditional cmdlets to the pipeline. In Example I-3, the first com-
mand gets all processes running on the system. It passes those
to the Where-Object cmdlet, which runs a comparison against
each incoming item. In this case, the comparison is $_.Handles
-ge 500, which checks whether the Handles property of the
current object (represented by the $_ variable) is greater than
or equal to 500. For each object in which this comparison holds
true, you pass the results to the Sort-Object cmdlet, asking it
to sort items by their Handles property. Finally, you pass the
objects to the Format-Table cmdlet to generate a table that
contains the Handles, Name, and Description of the process.

Example I-3. You can build more complex PowerShell commands by
using pipelines to link cmdlets, as shown here with Get-Process,
Where-Object, Sort-Object, and Format-Table

PS > Get-Process |
 Where-Object { $_.Handles -ge 500 } |
 Sort-Object Handles |
 Format-Table Handles,Name,Description -Auto

Handles Name Description
------- ---- -----------
 588 winlogon
 592 svchost
 667 lsass
 725 csrss
 742 System
 964 WINWORD Microsoft Office Word
 1112 OUTLOOK Microsoft Office Outlook
 2063 svchost

A Guided Tour of Windows PowerShell | xvii

Techniques to Protect You from Yourself
While aliases, wildcards, and composable pipelines are pow-
erful, their use in commands that modify system information
can easily be nerve-racking. After all, what does this command
do? Think about it, but don’t try it just yet:

PS > gps [b-t]*[c-r] | Stop-Process

It appears to stop all processes that begin with the letters b
through t and end with the letters c through r. How can you
be sure? Let PowerShell tell you. For commands that modify
data, PowerShell supports -WhatIf and -Confirm parameters
that let you see what a command would do:

PS > gps [b-t]*[c-r] | Stop-Process -whatif
What if: Performing operation "Stop-Process" on Target
 "ctfmon (812)".
What if: Performing operation "Stop-Process" on Target
 "Ditto (1916)".
What if: Performing operation "Stop-Process" on Target
 "dsamain (316)".
What if: Performing operation "Stop-Process" on Target
 "ehrecvr (1832)".
What if: Performing operation "Stop-Process" on Target
 "ehSched (1852)".
What if: Performing operation "Stop-Process" on Target
 "EXCEL (2092)".
What if: Performing operation "Stop-Process" on Target
 "explorer (1900)".
(...)

In this interaction, using the -WhatIf parameter with the Stop-
Process pipelined command lets you preview which processes
on your system will be stopped before you actually carry out
the operation.

Note that this example is not a dare! In the words of one re-
viewer:

Not only did it stop everything, but on Vista, it forced a
shutdown with only one minute warning!

It was very funny though…At least I had enough time to
save everything first!

xviii | A Guided Tour of Windows PowerShell

Common Discovery Commands
While reading through a guided tour is helpful, I find that most
learning happens in an ad hoc fashion. To find all commands
that match a given wildcard, use the Get-Command cmdlet. For
example, by entering the following, you can find out which
PowerShell commands (and Windows applications) contain
the word process.

PS > Get-Command *process*

CommandType Name Definition
----------- ---- ----------
Cmdlet Get-Process Get-Process [[-Name] <Str...
Application qprocess.exe c:\windows\system32\qproc...
Cmdlet Stop-Process Stop-Process [-Id] <Int32...

To see what a command such as Get-Process does, use the Get-
Help cmdlet, like this:

PS > Get-Help Get-Process

Since PowerShell lets you work with objects from the .NET
Framework, it provides the Get-Member cmdlet to retrieve in-
formation about the properties and methods that an object,
such as a .NET System.String, supports. Piping a string to the
Get-Member command displays its type name and its members:

PS > "Hello World" | Get-Member

 TypeName: System.String

Name MemberType Definition
---- ---------- ----------
(...)
PadLeft Method System.String PadLeft(Int32 tota...
PadRight Method System.String PadRight(Int32 tot...
Remove Method System.String Remove(Int32 start...
Replace Method System.String Replace(Char oldCh...
Split Method System.String[] Split(Params Cha...
StartsWith Method System.Boolean StartsWith(String...
Substring Method System.String Substring(Int32 st...
ToCharArray Method System.Char[] ToCharArray(), Sys...
ToLower Method System.String ToLower(), System....
ToLower-

A Guided Tour of Windows PowerShell | xix

Invariant Method System.String ToLowerInvariant()
ToString Method System.String ToString(), System...
ToUpper Method System.String ToUpper(), System....
ToUpper-
Invariant Method System.String ToUpperInvariant()
Trim Method System.String Trim(Params Char[]...
TrimEnd Method System.String TrimEnd(Params Cha...
TrimStart Method System.String TrimStart(Params C...
Chars Parameter- System.Char Chars(Int32 index) {...
 izedProperty
Length Property System.Int32 Length {get;}

Ubiquitous Scripting
PowerShell makes no distinction between the commands
typed at the command line and the commands written in a
script. Your favorite cmdlets work in scripts and your favorite
scripting techniques (e.g., the foreach statement) work directly
on the command line. For example, to add up the handle count
for all running processes:

PS > $handleCount = 0
PS > foreach($process in Get-Process) { $handleCount +=
 $process.Handles }
PS > $handleCount
19403

While PowerShell provides a command (Measure-Object) to
measure statistics about collections, this short example shows
how PowerShell lets you apply techniques that normally re-
quire a separate scripting or programming language.

In addition to using PowerShell scripting keywords, you can
also create and work directly with objects from the .NET
Framework that you may be familiar with. PowerShell becomes
almost like the C# immediate mode in Visual Studio. Exam-
ple I-4 shows how PowerShell lets you easily interact with
the .NET Framework.

xx | A Guided Tour of Windows PowerShell

Example I-4. Using objects from the .NET Framework to retrieve a
web page and process its content

PS > $webClient = New-Object System.Net.WebClient
PS > $content = $webClient.DownloadString("http://blogs.msdn.
 com/PowerShell/rss.aspx")
PS > $content.Substring(0,1000)
<?xml version="1.0" encoding="UTF-8" ?>
<?xml-stylesheet type="text/xsl" href="http://blogs.msdn.com/
 utility/FeedS
tylesheets/rss.xsl" media="screen"?><rss version="2.0" xmlns:
 dc="http://pu
rl.org/dc/elements/1.1/" xmlns:slash="http://purl.org/rss/1.0/
 modules/slas
h/" xmlns:wfw="http://wellformedweb.org/CommentAPI/"><channel>
<title>Windo
(...)

Ad Hoc Development
By blurring the lines between interactive administration and
writing scripts, the history buffers of PowerShell sessions
quickly become the basis for ad hoc script development. In this
example, you call the Get-History cmdlet to retrieve the history
of your session. For each item, you get its CommandLine property
(the thing you typed) and send the output to a new script file.

PS > Get-History | Foreach-Object { $_.CommandLine } > c:
 \temp\script.ps1
PS > notepad c:\temp\script.ps1
(save the content you want to keep)
PS > c:\temp\script.ps1

NOTE
If this is the first time you’ve run a script in PowerShell,
you will need to configure your execution policy. For
more information about selecting an execution policy,
type help about_signing.

.

A Guided Tour of Windows PowerShell | xxi

Bridging Technologies
We’ve seen how PowerShell lets you fully leverage the .NET
Framework in your tasks, but its support for common tech-
nologies stretches even further. As Example I-5 (continued
from Example I-4) shows, PowerShell supports XML.

Example I-5. Working with XML content in PowerShell

PS > $xmlContent = [xml] $content
PS > $xmlContent

xml xml-stylesheet rss
--- -------------- ---
version="1.0" encoding... type="text/xsl" href="... rss

PS > $xmlContent.rss

version : 2.0
dc : http://purl.org/dc/elements/1.1/
slash : http://purl.org/rss/1.0/modules/slash/
wfw : http://wellformedweb.org/CommentAPI/
channel : channel

PS > $xmlContent.rss.channel.item | select Title

title

CMD.exe compatibility
Time Stamping Log Files
Microsoft Compute Cluster now has a PowerShell Provider and
 Cmdlets
The Virtuous Cycle: .NET Developers using PowerShell
(...)

PowerShell also lets you work with Windows Management In-
strumentation (WMI) and CIM:

PS > Get-CimInstance Win32_Bios

SMBIOSBIOSVersion : ASUS A7N8X Deluxe ACPI BIOS Rev 1009
Manufacturer : Phoenix Technologies, LTD
Name : Phoenix - AwardBIOS v6.00PG
SerialNumber : xxxxxxxxxxx
Version : Nvidia - 42302e31

xxii | A Guided Tour of Windows PowerShell

Or, as Example I-6 shows, you can work with Active Directory
Service Interfaces (ADSI).

Example I-6. Working with Active Directory in PowerShell

PS > [ADSI] "WinNT://./Administrator" | Format-List *

UserFlags : {66113}
MaxStorage : {-1}
PasswordAge : {19550795}
PasswordExpired : {0}
LoginHours : {255 255 255 255 255 255 255 255
 255 255 255 255 255 255 255 255
 255 255 255 255 255}
FullName : {}
Description : {Built-in account for
 administering the computer/
 domain}
BadPasswordAttempts : {0}
LastLogin : {5/21/2007 3:00:00 AM}
HomeDirectory : {}
LoginScript : {}
Profile : {}
HomeDirDrive : {}
Parameters : {}
PrimaryGroupID : {513}
Name : {Administrator}
MinPasswordLength : {0}
MaxPasswordAge : {3710851}
MinPasswordAge : {0}
PasswordHistoryLength : {0}
AutoUnlockInterval : {1800}
LockoutObservationInterval : {1800}
MaxBadPasswordsAllowed : {0}
RasPermissions : {1}
objectSid : {1 5 0 0 0 0 0 5 21 0 0 0 121 227
 252 83 122 130 50 34 67 23 10 50
 244 1 0 0}

Or, as Example I-7 shows, you can even use PowerShell for
scripting traditional COM objects.

Example I-7. Working with COM objects in PowerShell

PS > $firewall = New-Object -com HNetCfg.FwMgr
PS > $firewall.LocalPolicy.CurrentProfile

A Guided Tour of Windows PowerShell | xxiii

Type : 1
FirewallEnabled : True
ExceptionsNotAllowed : False
NotificationsDisabled : False
UnicastResponsesToMulti-
castBroadcastDisabled : False
RemoteAdminSettings : System.__ComObject
IcmpSettings : System.__ComObject
GloballyOpenPorts : {Media Center Extender Serv
 ice, Remote Media Center Ex
 perience, Adam Test Instanc
 e, QWAVE...}
Services : {File and Printer Sharing,
 UPnP Framework, Remote Desk
 top}
AuthorizedApplications : {Remote Assistance, Windows
 Messenger, Media Center,
 Trillian...}

Namespace Navigation Through Providers
Another avenue PowerShell offers for working with the system
is providers. PowerShell providers let you navigate and manage
data stores using the same techniques you already use to work
with the filesystem, as illustrated in Example I-8.

Example I-8. Navigating the filesystem

PS > Set-Location c:\
PS > Get-ChildItem

 Directory: C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 11/2/2006 4:36 AM $WINDOWS.~BT
d---- 5/8/2007 8:37 PM Blurpark
d---- 11/29/2006 2:47 PM Boot
d---- 11/28/2006 2:10 PM DECCHECK
d---- 10/7/2006 4:30 PM Documents and
 Settings
d---- 5/21/2007 6:02 PM F&SC-demo
d---- 4/2/2007 7:21 PM Inetpub
d---- 5/20/2007 4:59 PM Program Files

xxiv | A Guided Tour of Windows PowerShell

d---- 5/21/2007 11:47 PM temp
d---- 5/21/2007 8:55 PM Windows
-a--- 1/7/2006 10:37 PM 0 autoexec.bat
-ar-s 11/29/2006 1:39 PM 8192 BOOTSECT.BAK
-a--- 1/7/2006 10:37 PM 0 config.sys
-a--- 5/1/2007 8:43 PM 33057 RUU.log
-a--- 4/2/2007 7:46 PM 2487 secedit.INTEG.RAW

This also works on the registry, as shown in Example I-9.

Example I-9. Navigating the registry

PS > Set-Location HKCU:\Software\Microsoft\Windows\
PS > Get-ChildItem

 Hive: HKEY_CURRENT_USER\Software\Microsoft\Windows

SKC VC Name Property
--- -- ---- --------
 30 1 CurrentVersion {ISC}
 3 1 Shell {BagMRU Size}
 4 2 ShellNoRoam {(default), BagMRU Size}

PS > Set-Location CurrentVersion\Run
PS > Get-ItemProperty .

(...)
FolderShare : "C:\Program Files\FolderShare\
 FolderShare.exe" /background
TaskSwitchXP : d:\lee\tools\TaskSwitchXP.exe
ctfmon.exe : C:\WINDOWS\system32\ctfmon.exe
Ditto : C:\Program Files\Ditto\Ditto.exe
(...)

And it even works on the machine’s certificate store, as Exam-
ple I-10 illustrates.

Example I-10. Navigating the certificate store

PS > Set-Location cert:\CurrentUser\Root
PS > Get-ChildItem

 Directory: Microsoft.PowerShell.Security\
 Certificate::CurrentUser\Root

A Guided Tour of Windows PowerShell | xxv

Thumbprint Subject
---------- -------
CDD4EEAE6000AC7F40C3802C171E30148030C072 CN=Microsoft Root
 Certificate...
BE36A4562FB2EE05DBB3D32323ADF445084ED656 CN=Thawte
 Timestamping CA,
 OU...
A43489159A520F0D93D032CCAF37E7FE20A8B419 CN=Microsoft Root
 Authority, ...
9FE47B4D05D46E8066BAB1D1BFC9E48F1DBE6B26 CN=PowerShell Local
 Certifica...
7F88CD7223F3C813818C994614A89C99FA3B5247 CN=Microsoft
 Authenticode(tm)...
245C97DF7514E7CF2DF8BE72AE957B9E04741E85 OU=Copyright (c)
 1997 Microso...
(...)

Much, Much More
As exciting as this guided tour was, it barely scratches the sur-
face of how you can use PowerShell to improve your produc-
tivity and systems management skills. For more information
about getting started in PowerShell, see the “Getting Started”
and “User Guide” files included in the Windows PowerShell
section of your Start menu. For a cookbook-style guide to
PowerShell (and hard-won solutions to its most common prob-
lems), you may be interested in the source of the material in
this pocket reference: my book Windows PowerShell Cook-
book, 3rd Edition (O’Reilly).

xxvi | A Guided Tour of Windows PowerShell

http://shop.oreilly.com/product/0636920024132.do
http://shop.oreilly.com/product/0636920024132.do

CHAPTER 1

PowerShell Language
and Environment

Commands and Expressions
PowerShell breaks any line that you enter into its individual
units (tokens), and then interprets each token in one of two
ways: as a command or as an expression. The difference is
subtle: expressions support logic and flow control statements
(such as if, foreach, and throw), whereas commands do not.

You will often want to control the way that Windows Power-
Shell interprets your statements, so Table 1-1 lists the options
available to you.

Table 1-1. Windows PowerShell evaluation controls

Statement Example Explanation

Precedence
control: ()

PS > 5 * (1 + 2)
15
PS > (dir).Count
2276

Forces the evaluation of a
command or expression, sim-
ilar to the way that paren-
theses are used to force the
order of evaluation in a math-
ematical expression.

Expression
subparse: $
()

PS > "The answer is
(2+2)"
The answer is (2+2)

Forces the evaluation of a
command or expression, sim-
ilar to the way that

1

Statement Example Explanation

PS > "The answer is
$(2+2)"
The answer is 4

PS > $value = 10
PS > $result = $(
 if($value -gt 0)
{ $true }
 else { $false })
PS > $result
True

parentheses are used to force
the order of evaluation in a
mathematical expression.

However, a subparse is as
powerful as a subprogram
and is required only when the
subprogram contains logic or
flow control statements.

This statement is also used to
expand dynamic information
inside a string.

List evalua-
tion: @()

PS > "Hello".Length
5
PS > @("Hello").Length
1
PS > (Get-
ChildItem).Count
12
PS > (Get-ChildItem
 *.txt).Count
PS > @(Get-ChildItem
 *.txt).Count
1

Forces an expression to be
evaluated as a list. If it is al-
ready a list, it will remain a
list. If it is not, PowerShell
temporarily treats it as one.

DATA
evaluation:
DATA { }

PS > DATA { 1 + 1 }
2
PS > DATA { $myVariable =
 "Test" }
Assignment statements are
 not allowed in
restricted language mode
 or a Data section.

Evaluates the given script
block in the context of the
PowerShell data language.
The data language supports
only data-centric features of
the PowerShell language.

Comments
To create single-line comments, begin a line with the # char-
acter. To create a block (or multiline) comment, surround the
region with the characters <# and #>.

This is a regular comment

2 | Chapter 1: PowerShell Language and Environment

<# This is a block comment

function MyTest
{
 "This should not be considered a function"
}

$myVariable = 10;

Block comment ends
#>

This is regular script again

Help Comments
PowerShell creates help for your script or function by looking
at its comments. If the comments include any supported help
tags, PowerShell adds those to the help for your command.

Comment-based help supports the following tags, which are
all case-insensitive:

.SYNOPSIS
A short summary of the command, ideally a single
sentence.

.DESCRIPTION
A more detailed description of the command.

.PARAMETER name
A description of parameter name, with one for each pa-
rameter you want to describe. While you can write
a .PARAMETER comment for each parameter, PowerShell
also supports comments written directly above the pa-
rameter (as shown in the solution). Putting parameter help
alongside the actual parameter makes it easier to read and
maintain.

.EXAMPLE
An example of this command in use, with one for each
example you want to provide. PowerShell treats the line
immediately beneath the .EXAMPLE tag as the example

Help Comments | 3

command. If this line doesn’t contain any text that looks
like a prompt, PowerShell adds a prompt before it. It treats
lines that follow the initial line as additional output and
example commentary.

.INPUTS
A short summary of pipeline input(s) supported by this
command. For each input type, PowerShell’s built-in help
follows this convention:

System.String
 You can pipe a string that contains a path to
 Get-ChildItem.

.OUTPUTS
A short summary of items generated by this command.
For each output type, PowerShell’s built-in help follows
this convention:

System.ServiceProcess.ServiceController
 Get-Service returns objects that represent the
 services on the computer.

.NOTES
Any additional notes or remarks about this command.

.LINK
A link to a related help topic or command, with
one .LINK tag per link. If the related help topic is a URL,
PowerShell launches that URL when the user supplies the
-Online parameter to Get-Help for your command.

Although these are all of the supported help tags you are likely
to use, comment-based help also supports tags for some of Get-
Help’s more obscure features: .COMPONENT, .ROLE, .FUNCTIONAL
ITY, .FORWARDHELPTARGETNAME, .FORWARDHELPCATEGORY, .REMOTE
HELPRUNSPACE, and .EXTERNALHELP. For more information about
these, type Get-Help about_Comment_Based_Help.

4 | Chapter 1: PowerShell Language and Environment

Variables
Windows PowerShell provides several ways to define and ac-
cess variables, as summarized in Table 1-2.

Table 1-2. Windows PowerShell variable syntaxes

Syntax Meaning

$simpleVariable =
"Value"

A simple variable name. The variable name must consist
of alphanumeric characters. Variable names are not
case-sensitive.

$variable1, $vari
able2 = "Value1",
“Value2”

Multiple variable assignment. PowerShell populates
each variable from the value in the corresponding po-
sition on the righthand side. Extra values are assigned
as a list to the last variable listed.

${ arbitrary!
@#@#`{var`}iable } =
"Value"

An arbitrary variable name. The variable name must be
surrounded by curly braces, but it may contain any
characters. Curly braces in the variable name must be
escaped with a backtick (`).

${c:\filename.
extension}

Variable “Get and Set Content” syntax. This is similar to
the arbitrary variable name syntax. If the name corre-
sponds to a valid PowerShell path, you can get and set
the content of the item at that location by reading and
writing to the variable.

[datatype] $variable
= "Value"

Strongly typed variable. Ensures that the variable may
contain only data of the type you declare. PowerShell
throws an error if it cannot coerce the data to this type
when you assign it.

[constraint] $vari
able = "Value"

Constrained variable. Ensures that the variable may
contain only data that passes the supplied validation
constraints.

PS > [ValidateLength(4, 10)] $a =
 "Hello"

The supported validation constraints are the same as
those supported as parameter validation attributes.

$SCOPE:variable Gets or sets the variable at that specific scope. Valid
scope names are global (to make a variable available
to the entire shell), script (to make a variable

Variables | 5

Syntax Meaning
available only to the current script or persistent during
module commands), local (to make a variable avail-
able only to the current scope and subscopes), and
private (to make a variable available only to the
current scope). The default scope is the current scope:
global when defined interactively in the shell,
script when defined outside any functions or script
blocks in a script, and local elsewhere.

New-Item Variable:
\variable -Value
value

Creates a new variable using the variable provider.

Get-Item Variable:
\variable

Get-Variable variable

Gets the variable using the variable provider or Get-
Variable cmdlet. This lets you access extra informa-
tion about the variable, such as its options and descrip-
tion.

New-Variable vari
able -Option option -
Value value

Creates a variable using the New-Variable cmdlet.
This lets you provide extra information about the vari-
able, such as its options and description.

NOTE
Unlike some languages, PowerShell rounds (rather than
truncates) numbers when it converts them to the [int]
data type:

PS > (3/2)
1.5
PS > [int] (3/2)
2

Booleans
Boolean (true or false) variables are most commonly initialized
to their literal values of $true and $false. When PowerShell
evaluates variables as part of a Boolean expression (for exam-
ple, an if statement), though, it maps them to a suitable
Boolean representation, as listed in Table 1-3.

6 | Chapter 1: PowerShell Language and Environment

Table 1-3. Windows PowerShell Boolean interpretations

Result Boolean representation

$true True

$false False

$null False

Nonzero number True

Zero False

Nonempty string True

Empty string False

Empty array False

Single-element array The Boolean representation of its single element

Multi-element array True

Hashtable (either empty or not) True

Strings
Windows PowerShell offers several facilities for working with
plain-text data.

Literal and Expanding Strings
To define a literal string (one in which no variable or escape
expansion occurs), enclose it in single quotes:

$myString = 'hello `t $ENV:SystemRoot'

$myString gets the actual value of hello `t $ENV:SystemRoot.

To define an expanding string (one in which variable and es-
cape expansion occur), enclose it in double quotes:

$myString = "hello `t $ENV:SystemRoot"

$myString gets a value similar to hello C:\WINDOWS.

Strings | 7

To include a single quote in a single-quoted string or a double
quote in a double-quoted string, include two of the quote char-
acters in a row:

PS > "Hello ""There""!"
Hello "There"!
PS > 'Hello ''There''!'
Hello 'There'!

NOTE
To include a complex expression inside an expanding
string, use a subexpression. For example:

$prompt = "$(get-location) >"

$prompt gets a value similar to c:\temp >.

Accessing the properties of an object requires a subex-
pression:

$version =
 "Current PowerShell version is:
 $($PSVersionTable.PSVersion.Major)"

$version gets a value similar to Current PowerShell ver
sion is: 3.

Here Strings
To define a here string (one that may span multiple lines), place
the two characters @" at the beginning and the two characters
"@ on their own line at the end.

For example:

$myHereString = @"
This text may span multiple lines, and may
contain "quotes."
"@

Here strings may be of either the literal (single-quoted) or ex-
panding (double-quoted) variety.

8 | Chapter 1: PowerShell Language and Environment

Escape Sequences
Windows PowerShell supports escape sequences inside
strings, as listed in Table 1-4.

Table 1-4. Windows PowerShell escape sequences

Sequence Meaning

`0 The null character. Often used as a record separator.

`a The alarm character. Generates a beep when displayed on the
console.

`b The backspace character. The previous character remains in the
string but is overwritten when displayed on the console.

`f A form feed. Creates a page break when printed on most printers.

`n A newline.

`r A carriage return. Newlines in PowerShell are indicated entirely
by the `n character, so this is rarely required.

`t A tab.

`v A vertical tab.

'' (two single
quotes)

A single quote, when in a literal string.

"" (two double
quotes)

A double quote, when in an expanding string.

`any other
character

That character, taken literally.

Numbers
PowerShell offers several options for interacting with numbers
and numeric data.

Simple Assignment
To define a variable that holds numeric data, simply assign it
as you would other variables. PowerShell automatically stores
your data in a format that is sufficient to accurately hold it.

Numbers | 9

$myInt = 10

$myInt gets the value of 10, as a (32-bit) integer.

$myDouble = 3.14

$myDouble gets the value of 3.14, as a (53-bit, 9 bits of precision)
double.

To explicitly assign a number as a byte (8-bit) or short (16-bit)
number, use the [byte] and [int16] casts:

$myByte = [byte] 128
$myShort = [int16] 32767

To explicitly assign a number as a long (64-bit) integer or dec-
imal (96-bit, 96 bits of precision), use the long and decimal
suffixes:

$myLong = 2147483648L

$myLong gets the value of 2147483648, as a long integer.

$myDecimal = 0.999D

$myDecimal gets the value of 0.999.

PowerShell also supports scientific notation, where
e<number> represents multiplying the original number by
the <number> power of 10:

$myPi = 3141592653e-9

$myPi gets the value of 3.141592653.

The data types in PowerShell (integer, long integer, double, and
decimal) are built on the .NET data types of the same names.

Administrative Numeric Constants
Since computer administrators rarely get the chance to work
with numbers in even powers of 10, PowerShell offers the nu-
meric constants of pb, tb, gb, mb, and kb to represent petabytes
(1,125,899,906,842,624), terabytes (1,099,511,627,776), gig-
abytes (1,073,741,824), megabytes (1,048,576), and kilobytes
(1,024), respectively:

10 | Chapter 1: PowerShell Language and Environment

PS > $downloadTime = (1gb + 250mb) / 120kb
PS > $downloadTime
10871.4666666667

Hexadecimal and Other Number Bases
To directly enter a hexadecimal number, use the hexadecimal
prefix 0x:

$myErrorCode = 0xFE4A

$myErrorCode gets the integer value 65098.

The PowerShell scripting language does not natively support
other number bases, but its support for interaction with
the .NET Framework enables conversion to and from binary,
octal, decimal, and hexadecimal:

$myBinary = [Convert]::ToInt32("101101010101", 2)

$myBinary gets the integer value of 2901.

$myOctal = [Convert]::ToInt32("1234567", 8)

$myOctal gets the integer value of 342391.

$myHexString = [Convert]::ToString(65098, 16)

$myHexString gets the string value of fe4a.

$myBinaryString = [Convert]::ToString(12345, 2)

$myBinaryString gets the string value of 11000000111001.

NOTE
See the section “Working with the .NET Frame-
work” on page 42 to learn more about using Power-
Shell to interact with the .NET Framework.

Large Numbers
To work with extremely large numbers, use the BigInt class.

[BigInt]::Pow(12345, 123)

Numbers | 11

To do math with several large numbers, use the [BigInt] cast
for all operands. Be sure to represent the numbers as strings
before converting them to big integers; otherwise, data loss
may occur:

PS > ([BigInt] "98123498123498123894") * ([BigInt] "981234
98123498123894")
9628220883992139841085109029337773723236

Imaginary and Complex Numbers
To work with imaginary and complex numbers, use the Sys
tem.Numerics.Complex class.

PS > [System.Numerics.Complex]::ImaginaryOne *
 [System.Numerics.Complex]::ImaginaryOne | Format-List

Real : -1
Imaginary : 0
Magnitude : 1
Phase : 3.14159265358979

Arrays and Lists

Array Definitions
PowerShell arrays hold lists of data. The @() (array cast) syntax
tells PowerShell to treat the contents between the parentheses
as an array. To create an empty array, type:

$myArray = @()

To define a nonempty array, use a comma to separate its
elements:

$mySimpleArray = 1,"Two",3.14

Arrays may optionally be only a single element long:

$myList = ,"Hello"

Or, alternatively (using the array cast syntax):

$myList = @("Hello")

12 | Chapter 1: PowerShell Language and Environment

Elements of an array do not need to be all of the same data type,
unless you declare it as a strongly typed array. In the following
example, the outer square brackets define a strongly typed
variable (as mentioned in “Variables” on page 5), and int[]
represents an array of integers:

[int[]] $myArray = 1,2,3.14

In this mode, PowerShell generates an error if it cannot convert
any of the elements in your list to the required data type. In
this case, it rounds 3.14 to the integer value of 3:

PS > $myArray[2]
3

NOTE
To ensure that PowerShell treats collections of uncertain
length (such as history lists or directory listings) as a list,
use the list evaluation syntax @(…) described in “Com-
mands and Expressions” on page 1.

Arrays can also be multidimensional jagged arrays (arrays
within arrays):

$multiDimensional = @(
 (1,2,3,4),
 (5,6,7,8)
)

$multiDimensional[0][1] returns 2, coming from row 0, col-
umn 1.

$multiDimensional[1][3] returns 8, coming from row 1, col-
umn 3.

To define a multidimensional array that is not jagged, create a
multidimensional instance of the .NET type. For integers, that
would be an array of System.Int32:

$multidimensional = New-Object "Int32[,]" 2,4
$multidimensional[0,1] = 2
$multidimensional[1,3] = 8

Arrays and Lists | 13

Array Access
To access a specific element in an array, use the [] operator.
PowerShell numbers your array elements starting at zero. Us-
ing $myArray = 1,2,3,4,5,6 as an example:

$myArray[0]

returns 1, the first element in the array.

$myArray[2]

returns 3, the third element in the array.

$myArray[-1]

returns 6, the last element of the array.

$myArray[-2]

returns 5, the second-to-last element of the array.

You can also access ranges of elements in your array:

PS > $myArray[0..2]
1
2
3

returns elements 0 through 2, inclusive.

PS > $myArray[-1..2]
6
1
2
3

returns the final element, wraps around, and returns elements
0 through 2, inclusive. PowerShell wraps around because the
first number in the range is positive, and the second number
in the range is negative.

PS > $myArray[-1..-3]
6
5
4

returns the last element of the array through to the third-to-last
element in the array, in descending order. PowerShell does not

14 | Chapter 1: PowerShell Language and Environment

wrap around (and therefore scans backward in this case) be-
cause both numbers in the range share the same sign.

Array Slicing
You can combine several of the statements in the previous sec-
tion at once to extract more complex ranges from an array. Use
the + sign to separate array ranges from explicit indexes:

$myArray[0,2,4]

returns the elements at indices 0, 2, and 4.

$myArray[0,2+4..5]

returns the elements at indices 0, 2, and 4 through 5, inclusive.

$myArray[,0+2..3+0,0]

returns the elements at indices 0, 2 through 3 inclusive, 0, and
0 again.

NOTE
You can use the array slicing syntax to create arrays as
well:

$myArray = ,0+2..3+0,0

Hashtables (Associative Arrays)

Hashtable Definitions
PowerShell hashtables (also called associative arrays) let you
associate keys with values. To define a hashtable, use the syn-
tax:

$myHashtable = @{}

You can initialize a hashtable with its key/value pairs when you
create it. PowerShell assumes that the keys are strings, but the
values may be any data type.

Hashtables (Associative Arrays) | 15

$myHashtable = @{ Key1 = "Value1"; "Key 2" = 1,2,3; 3.14 =
 "Pi" }

To define a hashtable that retains its insertion order, use the
[ordered] cast:

$orderedHash = [ordered] @{}
$orderedHash["NewKey"] = "Value"

Hashtable Access
To access or modify a specific element in an associative array,
you can use either the array-access or property-access syntax:

$myHashtable["Key1"]

returns "Value1".

$myHashtable."Key 2"

returns the array 1,2,3.

$myHashtable["New Item"] = 5

adds "New Item" to the hashtable.

$myHashtable."New Item" = 5

also adds "New Item" to the hashtable.

XML
PowerShell supports XML as a native data type. To create an
XML variable, cast a string to the [xml] type:

$myXml = [xml] @"
<AddressBook>
 <Person contactType="Personal">
 <Name>Lee</Name>
 <Phone type="home">555-1212</Phone>
 <Phone type="work">555-1213</Phone>
 </Person>
 <Person contactType="Business">
 <Name>Ariel</Name>
 <Phone>555-1234</Phone>
 </Person>

16 | Chapter 1: PowerShell Language and Environment

</AddressBook>
"@

PowerShell exposes all child nodes and attributes as properties.
When it does this, PowerShell automatically groups children
that share the same node type:

$myXml.AddressBook

returns an object that contains a Person property.

$myXml.AddressBook.Person

returns a list of Person nodes. Each person node exposes
contactType, Name, and Phone as properties.

$myXml.AddressBook.Person[0]

returns the first Person node.

$myXml.AddressBook.Person[0].ContactType

returns Personal as the contact type of the first Person node.

Simple Operators
Once you’ve defined your data, the next step is to work with it.

Arithmetic Operators
The arithmetic operators let you perform mathematical oper-
ations on your data, as shown in Table 1-5.

NOTE
The System.Math class in the .NET Framework offers
many powerful operations in addition to the native oper-
ators supported by PowerShell:

PS > [Math]::Pow([Math]::E, [Math]::Pi)
23.1406926327793

See the section “Working with the .NET Frame-
work” on page 42 to learn more about using Power-
Shell to interact with the .NET Framework.

Simple Operators | 17

Table 1-5. Windows PowerShell arithmetic operators

Operator Meaning

+ The addition operator:

$leftValue + $rightValue

When used with numbers, returns their sum.

When used with strings, returns a new string created by appending the
second string to the first.

When used with arrays, returns a new array created by appending the
second array to the first.

When used with hashtables, returns a new hashtable created by merging
the two hashtables. Since hashtable keys must be unique, PowerShell returns
an error if the second hashtable includes any keys already defined in
the first hashtable.

When used with any other type, PowerShell uses that type’s addition op-
erator (op_Addition) if it implements one.

- The subtraction operator:

$leftValue - $rightValue

When used with numbers, returns their difference.

This operator does not apply to strings.

This operator does not apply to arrays.

This operator does not apply to hashtables.

When used with any other type, PowerShell uses that type’s subtraction
operator (op_Subtraction) if it implements one.

* The multiplication operator:

$leftValue * $rightValue

When used with numbers, returns their product.

When used with strings ("=" * 80), returns a new string created by
appending the string to itself the number of times you specify.

When used with arrays (1..3 * 7), returns a new array created by ap-
pending the array to itself the number of times you specify.

This operator does not apply to hashtables.

18 | Chapter 1: PowerShell Language and Environment

Operator Meaning
When used with any other type, PowerShell uses that type’s multiplication
operator (op_Multiply) if it implements one.

/ The division operator:

$leftValue / $rightValue

When used with numbers, returns their quotient.

This operator does not apply to strings.

This operator does not apply to arrays.

This operator does not apply to hashtables.

When used with any other type, PowerShell uses that type’s
division operator (op_Division) if it implements one.

% The modulus operator:

$leftValue % $rightValue

When used with numbers, returns the remainder of their division.

This operator does not apply to strings.

This operator does not apply to arrays.

This operator does not apply to hashtables.

When used with any other type, PowerShell uses that type’s modulus
operator (op_Modulus) if it implements one.

+=

-=

*=

/=

%=

Assignment operators:

$variable operator= value

These operators match the simple arithmetic operators (+, -, *, /, and %)
but store the result in the variable %= on the lefthand side of the operator.
It is a short form for

$variable = $variable operator value.

Logical Operators
The logical operators let you compare Boolean values, as
shown in Table 1-6.

Simple Operators | 19

Table 1-6. Windows PowerShell logical operators

Operator Meaning

-and Logical AND:

$leftValue -and $rightValue

Returns $true if both lefthand and righthand arguments evaluate to
$true. Returns $false otherwise.

You can combine several -and operators in the same expression:

$value1 -and $value2 -and $value3 …

PowerShell implements the -and operator as a short-circuit operator and
evaluates arguments only if all arguments preceding it evaluate to $true.

-or Logical OR:

$leftValue -or $rightValue

Returns $true if the lefthand or righthand arguments evaluate to
$true. Returns $false otherwise.

You can combine several -or operators in the same expression:

$value1 -or $value2 -or $value3 ...

PowerShell implements the -or operator as a short-circuit operator and
evaluates arguments only if all arguments preceding it evaluate to $false.

-xor Logical exclusive OR:

$leftValue -xor $rightValue

Returns $true if either the lefthand or righthand argument evaluates to
$true, but not if both do.

Returns $false otherwise.

-not

!

Logical NOT:

-not $value

Returns $true if its righthand (and only) argument evaluates to
$false. Returns $false otherwise.

Binary Operators
The binary operators, listed in Table 1-7, let you apply the
Boolean logical operators bit by bit to the operator’s argu-

20 | Chapter 1: PowerShell Language and Environment

ments. When comparing bits, a 1 represents $true, whereas a
0 represents $false.

Table 1-7. Windows PowerShell binary operators

Operator Meaning

-band Binary AND:

$leftValue -band $rightValue

Returns a number where bits are set to 1 if the bits of the lefthand and
righthand arguments at that position are both 1. All other bits are set to 0.

For example:

PS > $boolean1 = "110110110"
PS > $boolean2 = "010010010"
PS > $int1 = [Convert]::ToInt32($boolean1, 2)
PS > $int2 = [Convert]::ToInt32($boolean2, 2)
PS > $result = $int1 -band $int2
PS > [Convert]::ToString($result, 2)
10010010

-bor Binary OR:

$leftValue -bor $rightValue

Returns a number where bits are set to 1 if either of the bits of the lefthand
and righthand arguments at that position is 1. All other bits are set to 0.

For example:

PS > $boolean1 = "110110110"
PS > $boolean2 = "010010010"
PS > $int1 = [Convert]::ToInt32($boolean1, 2)
PS > $int2 = [Convert]::ToInt32($boolean2, 2)
PS > $result = $int1 -bor $int2
PS > [Convert]::ToString($result, 2)
110110110

-bxor Binary exclusive OR:

$leftValue -bxor $rightValue

Returns a number where bits are set to 1 if either of the bits of the lefthand
and righthand arguments at that position is 1, but not if both are. All other
bits are set to 0.

For example:

Simple Operators | 21

Operator Meaning
PS > $boolean1 = "110110110"
PS > $boolean2 = "010010010"
PS > $int1 = [Convert]::ToInt32($boolean1, 2)
PS > $int2 = [Convert]::ToInt32($boolean2, 2)
PS > $result = $int1 -bor $int2
PS > [Convert]::ToString($result, 2)
100100100

-bnot Binary NOT:

-bnot $value

Returns a number where bits are set to 1 if the bit of the righthand (and
only) argument at that position is set to 1. All other bits are set to 0.

For example:

PS > $boolean1 = "110110110"
PS > $int1 = [Convert]::ToInt32($boolean1, 2)
PS > $result = -bnot $int1
PS > [Convert]::ToString($result, 2)
11111111111111111111111001001001

-shl Binary shift left:

$value -slh $count

Shifts the bits of a number to the left $count places. Bits on the righthand
side are set to 0.

For example:

PS > $int1 = 438
PS > [Convert]::ToString($int1, 2)
110110110

PS > $result = $int1 -shl 5
PS > [Convert]::ToString($result, 2)
11011011000000

-shr Binary shift right:

$value -slr $count

Shifts the bits of a number to the right $count places. For signed values,
bits on the lefthand side have their sign preserved.

For example:

PS > $int1 = -2345
PS > [Convert]::ToString($int1, 2)

22 | Chapter 1: PowerShell Language and Environment

Operator Meaning
11111111111111111111011011010111

PS > $result = $int1 -shr 3
PS > [Convert]::ToString($result, 2)
11111111111111111111111011011010

Other Operators
PowerShell supports several other simple operators, as listed
in Table 1-8.

Table 1-8. Other Windows PowerShell operators

Operator Meaning

-replace The replace operator:

"target" -replace "pattern","replacement"

Returns a new string, where the text in "target" that matches the
regular expression "pattern" has been replaced with the replacement
text "replacement".

By default, PowerShell performs a case-insensitive comparison. The
-ireplace operator makes this case-insensitivity explicit, whereas the
-creplace operator performs a case-sensitive comparison.

If the regular expression pattern contains named captures or capture
groups, the replacement string may reference those as well.

For example:

PS > "Hello World" -replace "(.*) (.*)",'$2 $1'
World Hello

If "target" represents an array, the -replace operator operates on
each element of that array.

For more information on the details of regular expressions, see Chapter 2.

-f The format operator:

"Format String" -f Values

Returns a string where the format items in the format string have been
replaced with the text equivalent of the values in the value array.

For example:

Simple Operators | 23

Operator Meaning
PS > "{0:n0}" -f 1000000000
1,000,000,000

The format string for the format operator is exactly the format string
supported by the .NET String.Format method.

For more details about the syntax of the format string, see Chapter 4.

-as The type conversion operator:

$value -as [Type]

Returns $value cast to the given .NET type. If this conversion is not
possible, PowerShell returns $null.

For example:

PS > 3/2 -as [int]
2
PS > $result = "Hello" -as [int]
PS > $result -eq $null
True

-split The unary split operator:

-split "Input String"

Breaks the given input string into an array, using whitespace (\s+) to
identify the boundary between elements. It also trims the results.

For example:

PS > -split " Hello World "
Hello
World

The binary split operator:

"Input String" -
split "delimiter",maximum,options
"Input String" -split { Scriptblock },maximum

Breaks the given input string into an array, using the given delim
iter or script block to identify the boundary between elements.

Delimiter is interpreted as a regular expression match. Script
block is called for each character in the input, and a split is introduced
when it returns $true.

Maximum defines the maximum number of elements to be returned,
leaving unsplit elements as the last item. This item is optional.

24 | Chapter 1: PowerShell Language and Environment

Operator Meaning
Use "0" for unlimited if you want to provide options but not alter the
maximum.

Options define special behavior to apply to the splitting behavior. The
possible enumeration values are:

• SimpleMatch: Split on literal strings, rather than regular ex-
pressions they may represent.

• RegexMatch: Split on regular expressions. This option is the
default.

• CultureInvariant: Does not use culture-specific capitaliza-
tion rules when doing a case-insensitive split.

• IgnorePatternWhitespace: Ignores spaces and regular ex-
pression comments in the split pattern.

• Multiline: Allows the ̂ and $ characters to match line bound-
aries, not just the beginning and end of the content.

• Singleline: Treats the ̂ and $ characters as the beginning and
end of the content. This option is the default.

• IgnoreCase: Ignores the capitalization of the content when
searching for matches.

• ExplicitCapture: In a regular expression match, only cap-
tures named groups. This option has no impact on the -split
operator.

For example:

PS > "1a2B3" -split "[a-z]+",0,"IgnoreCase"
1
2
3

-join The unary join operator:

-join ("item1","item2",...,"item_n")

Combines the supplied items into a single string, using no separator. For
example:

PS > -join ("a","b")
ab

The binary join operator:

("item1","item2",...,"item_n") -join Delimiter

Simple Operators | 25

Operator Meaning
Combines the supplied items into a single string, using Delimiter as
the separator. For example:

PS > ("a","b") -join ", "
a, b

Comparison Operators
The PowerShell comparison operators, listed in Table 1-9, let
you compare expressions against each other. By default,
PowerShell’s comparison operators are case-insensitive. For all
operators where case sensitivity applies, the -i prefix makes
this case insensitivity explicit, whereas the -c prefix performs
a case-sensitive comparison.

Table 1-9. Windows PowerShell comparison operators

Operator Meaning

-eq The equality operator:

$leftValue -eq $rightValue

For all primitive types, returns $true if $leftValue and
$rightValue are equal.

When used with arrays, returns all elements in $leftValue that
are equal to $rightValue.

When used with any other type, PowerShell uses that type’s
Equals() method if it implements one.

-ne The negated equality operator:

$leftValue -ne $rightValue

For all primitive types, returns $true if$leftValue and $right
Value are not equal.

When used with arrays, returns all elements in $leftValue that
are not equal to$rightValue.

When used with any other type, PowerShell returns the negation
of that type’s Equals() method if it implements one.

-ge The greater-than-or-equal operator:

26 | Chapter 1: PowerShell Language and Environment

Operator Meaning
$leftValue -ge $rightValue

For all primitive types, returns $true if $leftValue is greater
than or equal to $rightValue.

When used with arrays, returns all elements in $leftValue that
are greater than or equal to $rightValue.

When used with any other type, PowerShell returns the result of
that object’s Compare() method if it implements one. If the
method returns a number greater than or equal to zero, the operator
returns $true.

-gt The greater-than operator:

$leftValue -gt $rightValue

For all primitive types, returns $true if $leftValue is greater
than $rightValue.

When used with arrays, returns all elements in $leftValue that
are greater than $rightValue.

When used with any other type, PowerShell returns the result of
that object’s Compare() method if it implements one. If the
method returns a number greater than zero, the operator returns
$true.

-in The in operator:

$value -in $list

Returns $true if the value $value is contained in the list $list.
That is, if $item -eq $value returns $true for at least one
item in the list. This is equivalent to the -contains operator with
the operands reversed.

-notin The negated in operator:

Returns $true when the -in operator would return $false.

-lt The less-than operator:

$leftValue -lt $rightValue

For all primitive types, returns $true if $leftValue is less than
$rightValue.

Comparison Operators | 27

Operator Meaning
When used with arrays, returns all elements in $leftValue that
are less than $rightValue.

When used with any other type, PowerShell returns the result of
that object’s Compare() method if it implements one. If the
method returns a number less than zero, the operator returns
$true.

-le The less-than-or-equal operator:

$leftValue -le $rightValue

For all primitive types, returns $true if $leftValue is less than
or equal to$rightValue.

When used with arrays, returns all elements in $leftValue that
are less than or equal to $rightValue.

When used with any other type, PowerShell returns the result of
that object’s Compare() method if it implements one. If the
method returns a number less than or equal to zero, the operator
returns $true.

-like The like operator:

$leftValue -like Pattern

Evaluates the pattern against the target, returning $true if the
simple match is successful.

When used with arrays, returns all elements in $leftValue that
match Pattern.

The -like operator supports the following simple wildcard
characters:

?
Any single unspecified character

*
Zero or more unspecified characters

[a-b]
Any character in the range of a–b

[ab]
The specified characters a or b

For example:

28 | Chapter 1: PowerShell Language and Environment

Operator Meaning
PS > "Test" -like "[A-Z]e?[tr]"
True

-notlike The negated like operator:

Returns $true when the -like operator would return $false.

-match The match operator:

"Target" -match Regular Expression

Evaluates the regular expression against the target, returning
$true if the match is successful. Once complete, PowerShell places
the successful matches in the $matches variable.

When used with arrays, returns all elements in Target that match
Regular Expression.

The $matches variable is a hashtable that maps the individual
matches to the text they match. 0 is the entire text of the match, 1
and on contain the text from any unnamed captures in the regular
expression, and string values contain the text from any named
captures in the regular expression.

For example:

PS > "Hello World" -match "(.*) (.*)"
True
PS > $matches[1]
Hello

For more information on the details of regular expressions, see
Chapter 2.

-notmatch The negated match operator:

Returns $true when the -match operator would return $false.

The -notmatch operator still populates the $matches variable
with the results of match.

-contains The contains operator:

$list -contains $value

Returns $true if the list specified by $list contains the value
$value—that is, if $item -eq $value returns $true for at
least one item in the list. This is equivalent to the -in operator with
the operands reversed.

Comparison Operators | 29

Operator Meaning

-notcontains The negated contains operator:

Returns $true when the -contains operator would return
$false.

-is The type operator:

$leftValue -is [type]

Returns $true if $value is (or extends) the specified .NET type.

-isnot The negated type operator:

Returns $true when the -is operator would return $false.

Conditional Statements
Conditional statements in PowerShell let you change the flow
of execution in your script.

if, elseif, and else Statements
if(condition)
{
 statement block
}
elseif(condition)
{
 statement block
}
else
{
 statement block
}

If condition evaluates to $true, PowerShell executes the state-
ment block you provide. Then, it resumes execution at the end
of the if/elseif/else statement list. PowerShell requires the
enclosing braces around the statement block, even if the state-
ment block contains only one statement.

30 | Chapter 1: PowerShell Language and Environment

NOTE
See “Simple Operators” on page 17 and “Comparison
Operators” on page 26 for a discussion on how Power-
Shell evaluates expressions as conditions.

If condition evaluates to $false, PowerShell evaluates any fol-
lowing (optional) elseif conditions until one matches. If one
matches, PowerShell executes the statement block associated
with that condition, and then resumes execution at the end of
the if/elseif/else statement list.

For example:

$textToMatch = Read-Host "Enter some text"
$matchType = Read-Host "Apply Simple or Regex matching?"
$pattern = Read-Host "Match pattern"
if($matchType -eq "Simple")
{
 $textToMatch -like $pattern
}
elseif($matchType -eq "Regex")
{
 $textToMatch -match $pattern
}
else
{
 Write-Host "Match type must be Simple or Regex"
}

If none of the conditions evaluate to $true, PowerShell exe-
cutes the statement block associated with the (optional) else
clause, and then resumes execution at the end of the if/elseif/
else statement list.

switch Statements
switch options expression
{
 comparison value { statement block }
 -or-
 { comparison expression } { statement block }
 (...)

Conditional Statements | 31

 default { statement block }
}

or:

switch options -file filename
{
 comparison value { statement block }
 -or
 { comparison expression } { statement block }
 (...)
 default { statement block }
}

When PowerShell evaluates a switch statement, it evaluates
expression against the statements in the switch body. If
expression is a list of values, PowerShell evaluates each item
against the statements in the switch body. If you specify
the -file option, PowerShell treats the lines in the file as
though they were a list of items in expression.

The comparison value statements let you match the current
input item against the pattern specified by comparison value.
By default, PowerShell treats this as a case-insensitive exact
match, but the options you provide to the switch statement can
change this, as shown in Table 1-10.

Table 1-10. Options supported by PowerShell switch statements

Option Meaning

-casesensitive

-c

Case-sensitive match.

With this option active, PowerShell executes the associated
statement block only if the current input item exactly matches
the value specified by comparison value. If the current
input object is a string, the match is case-sensitive.

-exact

-e

Exact match

With this option active, PowerShell executes the associated
statement block only if the current input item exactly matches
the value specified by comparison value. This match is
case-insensitive. This is the default mode of operation.

-regex

-r

Regular-expression match

32 | Chapter 1: PowerShell Language and Environment

Option Meaning
With this option active, PowerShell executes the associated
statement block only if the current input item matches the regular
expression specified by comparison value. This match is
case-insensitive.

-wildcard

-w

Wildcard match

With this option active, PowerShell executes the associated
statement block only if the current input item matches the
wildcard specified by comparison value.

The wildcard match supports the following simple wildcard
characters:

?
Any single unspecified character

*
Zero or more unspecified characters

[a-b]
Any character in the range of a–b

[ab]
The specified characters a or b

This match is case-insensitive.

The { comparison expression } statements let you process the
current input item, which is stored in the $_ (or $PSItem) vari-
able, in an arbitrary script block. When it processes a { compar
ison expression } statement, PowerShell executes the associ-
ated statement block only if { comparison expression } evalu-
ates to $true.

PowerShell executes the statement block associated with the
(optional) default statement if no other statements in the
switch body match.

When processing a switch statement, PowerShell tries to match
the current input object against each statement in the switch
body, falling through to the next statement even after one or
more have already matched. To have PowerShell discontinue
the current comparison (but retry the switch statement with

Conditional Statements | 33

the next input object), include a continue statement as the last
statement in the statement block. To have PowerShell exit a
switch statement completely after it processes a match, include
a break statement as the last statement in the statement block.

For example:

$myPhones = "(555) 555-1212","555-1234"

switch -regex ($myPhones)
{
 { $_.Length -le 8 } { "Area code was not specified";
 break }
 { $_.Length -gt 8 } { "Area code was specified" }
 "\((555)\).*" { "In the $($matches[1]) area code"
 }
}

produces the output:

Area code was specified
In the 555 area code
Area code was not specified

NOTE
See “Looping Statements” on page 34 for more infor-
mation about the break statement.

By default, PowerShell treats this as a case-insensitive exact
match, but the options you provide to the switch statement can
change this.

Looping Statements
Looping statements in PowerShell let you execute groups of
statements multiple times.

for Statement
:loop_label for (initialization; condition; increment)
{

34 | Chapter 1: PowerShell Language and Environment

 statement block
}

When PowerShell executes a for statement, it first executes the
expression given by initialization. It next evaluates condi
tion. If condition evaluates to $true, PowerShell executes the
given statement block. It then executes the expression given by
increment. PowerShell continues to execute the statement
block and increment statement as long as condition evaluates
to $true.

For example:

for($counter = 0; $counter -lt 10; $counter++)
{
 Write-Host "Processing item $counter"
}

The break and continue statements (discussed later in this ap-
pendix) can specify the loop_label of any enclosing looping
statement as their target.

foreach Statement
:loop_label foreach (variable in expression)
{
 statement block
}

When PowerShell executes a foreach statement, it executes the
pipeline given by expression—for example, Get-Process |
Where-Object {$_.Handles -gt 500} or 1..10. For each item
produced by the expression, it assigns that item to the variable
specified by variable and then executes the given statement
block. For example:

$handleSum = 0;
foreach($process in Get-Process |
 Where-Object { $_.Handles -gt 500 })
{
 $handleSum += $process.Handles
}
$handleSum

Looping Statements | 35

The break and continue statements (discussed later in this ap-
pendix) can specify the loop_label of any enclosing looping
statement as their target. In addition to the foreach statement,
PowerShell also offers the Foreach-Object cmdlet with similar
capabilities.

while Statement
:loop_label while(condition)
{
 statement block
}

When PowerShell executes a while statement, it first evaluates
the expression given by condition. If this expression evaluates
to $true, PowerShell executes the given statement
block. PowerShell continues to execute the statement block as
long as condition evaluates to $true. For example:

$command = "";
while($command -notmatch "quit")
{
 $command = Read-Host "Enter your command"
}

The break and continue statements (discussed later in this ap-
pendix) can specify the loop_label of any enclosing looping
statement as their target.

do … while Statement/do … until Statement
:loop_label do
{
 statement block
} while(condition)

or

:loop_label do
{
 statement block
} until(condition)

36 | Chapter 1: PowerShell Language and Environment

When PowerShell executes a do … while or do … until state-
ment, it first executes the given statement block. In a do …
while statement, PowerShell continues to execute the state-
ment block as long as condition evaluates to $true. In a do …
until statement, PowerShell continues to execute the state-
ment as long as condition evaluates to $false. For example:

$validResponses = "Yes","No"
$response = ""
do
{
 $response = read-host "Yes or No?"
} while($validResponses -notcontains $response)
"Got it."

$response = ""
do
{
 $response = read-host "Yes or No?"
} until($validResponses -contains $response)
"Got it."

The break and continue statements (discussed later) can specify
the loop_label of any enclosing looping statement as their tar-
get.

Flow Control Statements
PowerShell supports two statements to help you control flow
within loops: break and continue.

break
The break statement halts execution of the current loop.
PowerShell then resumes execution at the end of the current
looping statement, as though the looping statement had com-
pleted naturally. For example:

for($counter = 0; $counter -lt 5; $counter++)
{
 for($counter2 = 0; $counter2 -lt 5; $counter2++)
 {
 if($counter2 -eq 2)
 {

Looping Statements | 37

 break
 }

 Write-Host "Processing item $counter,$counter2"
 }
}

produces the output:

Processing item 0,0
Processing item 0,1
Processing item 1,0
Processing item 1,1
Processing item 2,0
Processing item 2,1
Processing item 3,0
Processing item 3,1
Processing item 4,0
Processing item 4,1

If you specify a label with the break statement—for example,
break outer_loop—PowerShell halts the execution of that loop
instead. For example:

:outer_loop for($counter = 0; $counter -lt 5; $counter++)
{
 for($counter2 = 0; $counter2 -lt 5; $counter2++)
 {
 if($counter2 -eq 2)
 {
 break outer_loop
 }

 Write-Host "Processing item $counter,$counter2"
 }
}

produces the output:

Processing item 0,0
Processing item 0,1

continue
The continue statement skips execution of the rest of the cur-
rent statement block. PowerShell then continues with the next

38 | Chapter 1: PowerShell Language and Environment

iteration of the current looping statement, as though the state-
ment block had completed naturally. For example:

for($counter = 0; $counter -lt 5; $counter++)
{
 for($counter2 = 0; $counter2 -lt 5; $counter2++)
 {
 if($counter2 -eq 2)
 {
 continue
 }

 Write-Host "Processing item $counter,$counter2"
 }
}

produces the output:

Processing item 0,0
Processing item 0,1
Processing item 0,3
Processing item 0,4
Processing item 1,0
Processing item 1,1
Processing item 1,3
Processing item 1,4
Processing item 2,0
Processing item 2,1
Processing item 2,3
Processing item 2,4
Processing item 3,0
Processing item 3,1
Processing item 3,3
Processing item 3,4
Processing item 4,0
Processing item 4,1
Processing item 4,3
Processing item 4,4

If you specify a label with the continue statement—for exam-
ple, continue outer_loop—PowerShell continues with the next
iteration of that loop instead.

For example:

:outer_loop for($counter = 0; $counter -lt 5; $counter++)
{
 for($counter2 = 0; $counter2 -lt 5; $counter2++)

Looping Statements | 39

 {
 if($counter2 -eq 2)
 {
 continue outer_loop
 }

 Write-Host "Processing item $counter,$counter2"
 }
}

produces the output:

Processing item 0,0
Processing item 0,1
Processing item 1,0
Processing item 1,1
Processing item 2,0
Processing item 2,1
Processing item 3,0
Processing item 3,1
Processing item 4,0
Processing item 4,1

Workflow-Specific Statements
Within a workflow, PowerShell supports four statements not
supported in traditional PowerShell scripts: InlineScript,
Parallel, Sequence, and foreach -parallel.

InlineScript
The InlineScript keyword defines an island of PowerShell
script that will be invoked as a unit, and with traditional
PowerShell scripting semantics. For example:

workflow MyWorkflow
{
 ## Method invocation not supported in a workflow
 ## [Math]::Sqrt(100)

 InlineScript
 {
 ## Supported in an InlineScript
 [Math]::Sqrt(100)
 }
}

40 | Chapter 1: PowerShell Language and Environment

Parallel/Sequence
The Parallel keyword specifies that all statements within the
statement block should run in parallel. To group statements
that should be run as a unit, use the Sequence keyword:

workflow MyWorkflow
{
 Parallel
 {
 InlineScript { Start-Sleep -Seconds 2; "One thing
 run in parallel" }
 InlineScript { Start-Sleep -Seconds 4; "Another
 thing run in parallel" }
 InlineScript { Start-Sleep -Seconds 3; "A third
 thing run in parallel" }

 Sequence
 {
 Start-Sleep -Seconds 1
 "A fourth"
 "and fifth thing run as a unit, in parallel"
 }
 }
}

foreach -parallel
Acts like PowerShell’s traditional foreach statement, but pro-
cesses each element of the collection in parallel:

workflow MyWorkflow
{
 $items = 1..10
 foreach -parallel ($item in $items)
 {
 $sleep = Get-Random -Max 200
 Start-Sleep -Milliseconds $sleep
 $item
 }
}

Looping Statements | 41

Working with the .NET Framework
One feature that gives PowerShell its incredible reach into both
system administration and application development is its ca-
pability to leverage Microsoft’s enormous and broad .NET
Framework.

Work with the .NET Framework in PowerShell comes mainly
by way of one of two tasks: calling methods or accessing
properties.

Static Methods
To call a static method on a class, type:

[ClassName]::MethodName(parameter list)

For example:

PS > [System.Diagnostics.Process]::GetProcessById(0)

gets the process with the ID of 0 and displays the following
output:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 0 0 0 16 0 0 Idle

Instance Methods
To call a method on an instance of an object, type:

$objectReference.MethodName(parameter list)

For example:

PS > $process = [System.Diagnostics.Process]::
GetProcessById(0)
PS > $process.Refresh()

This stores the process with ID of 0 into the $process variable.
It then calls the Refresh() instance method on that specific
process.

42 | Chapter 1: PowerShell Language and Environment

Explicitly Implemented Interface Methods
To call a method on an explictly implemented interface:

([Interface] $objectReference).MethodName(parameter list)

For example:

PS > ([IConvertible] 123).ToUint16($null)

Static Properties
To access a static property on a class, type:

[ClassName]::PropertyName

or:

[ClassName]::PropertyName = value

For example, the [System.DateTime] class provides a Now static
property that returns the current time:

PS > [System.DateTime]::Now
Sunday, July 16, 2006 2:07:20 PM

Although this is rare, some types let you set the value of some
static properties.

Instance Properties
To access an instance property on an object, type:

$objectReference.PropertyName

or:

$objectReference.PropertyName = value

For example:

PS > $today = [System.DateTime]::Now
PS > $today.DayOfWeek
Sunday

This stores the current date in the $today variable. It then calls
the DayOfWeek instance property on that specific date.

Working with the .NET Framework | 43

Learning About Types
The two primary avenues for learning about classes and types
are the Get-Member cmdlet and the documentation for the .NET
Framework.

The Get-Member cmdlet
To learn what methods and properties a given type supports,
pass it through the Get-Member cmdlet, as shown in Table 1-11.

Table 1-11. Working with the Get-Member cmdlet

Action Result

[typename] | Get-
Member -Static

All the static methods and properties of a given type.

$objectReference
| Get-Member -
Static

All the static methods and properties provided by the type in
$objectReference.

$objectRefer
ence | Get-Member

All the instance methods and properties provided by the type
in $objectReference. If $objectReference repre-
sents a collection of items, PowerShell returns the instances
and properties of the types contained by that collection. To
view the instances and properties of a collection itself, use the
-InputObject parameter of Get-Member:

Get-Member -InputObject $objectReference

[typename] | Get-
Member

All the instance methods and properties of a System.Run
timeType object that represents this type.

.NET Framework documentation
Another source of information about the classes in the .NET
Framework is the documentation itself, available through the
search facilities at MSDN.

Typical documentation for a class first starts with a general
overview, and then provides a hyperlink to the members of the
class—the list of methods and properties it supports.

44 | Chapter 1: PowerShell Language and Environment

http://msdn.microsoft.com

NOTE
To get to the documentation for the members quickly,
search for them more explicitly by adding the term
“members” to your MSDN search term:

classname members

The documentation for the members of a class lists their con-
structors, methods, properties, and more. It uses an S icon to
represent the static methods and properties. Click the member
name for more information about that member, including the
type of object that the member produces.

Type Shortcuts
When you specify a type name, PowerShell lets you use a short
form for some of the most common types, as listed in Ta-
ble 1-12.

Table 1-12. PowerShell type shortcuts

Type shortcut Full classname

[Adsi] [System.DirectoryServices.DirectoryEn
try]

[AdsiSearcher] [System.DirectoryServices.Directory
Searcher]

[Float] [System.Single]

[Hashtable] [System.Collections.Hashtable]

[Int] [System.Int32]

[IPAddress] [System.Net.IPAddress]

[Long] [System.Collections.Int64]

[PowerShell] [System.Management.Automation.Power
Shell]

[PSCustomObject] [System.Management.Automation.PSObject]

[PSModuleInfo] [System.Management.Automation.PSModu
leInfo]

Working with the .NET Framework | 45

Type shortcut Full classname

[PSObject] [System.Management.Automation.PSObject]

[Ref] [System.Management.Automation.PSRefer
ence]

[Regex] [System.Text.RegularExpressions.Regex]

[Runspace] [System.Management.Automation.Runspa
ces.Runspace]

[RunspaceFac
tory]

[System.Management.Automation.Runspa
ces.RunspaceFactory]

[ScriptBlock] [System.Management.Automation.Script
Block]

[Switch] [System.Management.Automation.SwitchPara
meter]

[Wmi] [System.Management.ManagementObject]

[WmiClass] [System.Management.ManagementClass]

[WmiSearcher] [System.Management.ManagementObject
Searcher]

[Xml] [System.Xml.XmlDocument]

[TypeName] [System.TypeName]

Creating Instances of Types
$objectReference = New-Object TypeName parameters

Although static methods and properties of a class generate ob-
jects, you will often want to create them explicitly yourself.
PowerShell’s New-Object cmdlet lets you create an instance of
the type you specify. The parameter list must match the list of
parameters accepted by one of the type’s constructors, as doc-
umented on MSDN.

For example:

$webClient = New-Object Net.WebClient
$webClient.DownloadString("http://search.msn.com")

46 | Chapter 1: PowerShell Language and Environment

If the type represents a generic type, enclose its type parameters
in square brackets:

PS > $hashtable = New-Object "System.Collections.Generic.
 Dictionary[String,Bool]"
PS > $hashtable["Test"] = $true

Most common types are available by default. However, many
types are available only after you load the library (called the
assembly) that defines them. The MSDN documentation for a
class includes the assembly that defines it.

To load an assembly, use the -AssemblyName parameter of the
Add-Type cmdlet:

PS > Add-Type -AssemblyName System.Web

PS > [Web.HttpUtility]::UrlEncode("http://www.bing.com")
http%3a%2f%2fwww.bing.com

Interacting with COM Objects
PowerShell lets you access methods and properties on COM
objects the same way you would interact with objects from
the .NET Framework. To interact with a COM object, use its
ProgId with the -ComObject parameter (often shortened to -
Com) on New-Object:

PS > $shell = New-Object -Com Shell.Application
PS > $shell.Windows() | Select-Object
LocationName,LocationUrl

For more information about the COM objects most useful to
system administrators, see Chapter 8.

Extending Types
PowerShell supports two ways to add your own methods and
properties to any type: the Add-Member cmdlet and a custom
types extension file.

Working with the .NET Framework | 47

The Add-Member cmdlet
The Add-Member cmdlet lets you dynamically add methods,
properties, and more to an object. It supports the extensions
shown in Table 1-13.

Table 1-13. Selected member types supported by the Add-Member
cmdlet

Member type Meaning

AliasProperty A property defined to alias another property:

PS > $testObject = [PsObject] "Test"
PS > $testObject | Add-Member
"AliasProperty" Count Length
PS > $testObject.Count
4

CodeProperty A property defined by a System.Reflection.Method
Info.

This method must be public, static, return results (nonvoid), and
take one parameter of type PsObject.

NoteProperty A property defined by the initial value you provide:

PS > $testObject = [PsObject] "Test"
PS > $testObject | Add-Member
NoteProperty Reversed tseT
PS > $testObject.Reversed
tseT

ScriptProperty A property defined by the script block you provide. In that script
block, $this refers to the current instance:

PS > $testObject = [PsObject] ("Hi" * 100)
PS > $testObject | Add-Member
ScriptProperty IsLong
 {
 $this.Length -gt 100
 }
PS > $testObject.IsLong

True

PropertySet A property defined as a shortcut to a set of properties. Used in
cmdlets such as Select-Object:

48 | Chapter 1: PowerShell Language and Environment

Member type Meaning
PS > $testObject = [PsObject]
[DateTime]::Now
PS > $collection = New-Object `
 Collections.ObjectModel.
 Collection``1[System.String]
$collection.Add("Month")
$collection.Add("Year")
$testObject | Add-Member PropertySet
 MonthYear $collection
$testObject | select MonthYear

Month Year
----- ----
 3 2010

CodeMethod A method defined by a System.Reflection.MethodInfo.

This method must be public, static, and take one parameter of
type PsObject.

ScriptMethod A method defined by the script block you provide. In that script
block, $this refers to the current instance, and $args refers to
the input parameters:

PS > $testObject = [PsObject] "Hello"
PS > $testObject | Add-Member
ScriptMethod IsLong {
 $this.Length -gt $args[0]
 }
PS > $testObject.IsLong(3)
True

PS > $testObject.IsLong(100)
False

Custom type extension files
While the Add-Member cmdlet lets you customize individual ob-
jects, PowerShell also supports configuration files that let you
customize all objects of a given type. For example, you might
want to add a Reverse() method to all strings or a HelpUrl
property (based on the MSDN Url Aliases) to all types.

Working with the .NET Framework | 49

PowerShell adds several type extensions to the file
types.ps1xml, in the PowerShell installation directory. This file
is useful as a source of examples, but you should not modify it
directly. Instead, create a new one and use the Update-Type
Data cmdlet to load your customizations. The following com-
mand loads Types.custom.ps1xml from the same directory as
your profile:

$typesFile = Join-Path (Split-Path $profile) "Types.
 Custom.Ps1Xml"
Update-TypeData -PrependPath $typesFile

Writing Scripts, Reusing Functionality
When you want to start packaging and reusing your com-
mands, the best place to put them is in scripts, functions, and
script blocks. A script is a text file that contains a sequence of
PowerShell commands. A function is also a sequence of
PowerShell commands but is usually placed within a script to
break it into smaller, more easily understood segments. A
script block is a function with no name. All three support the
same functionality, except for how you define them.

Writing Commands

Writing scripts
To write a script, write your PowerShell commands in a text
editor and save the file with a .ps1 extension.

Writing functions
Functions let you package blocks of closely related commands
into a single unit that you can access by name.

function SCOPE:name(parameters)
{
 statement block
}

or:

50 | Chapter 1: PowerShell Language and Environment

filter SCOPE:name(parameters)
{
 statement block
}

Valid scope names are global (to create a function available
to the entire shell), script (to create a function available only
to the current script), local (to create a function available
only to the current scope and subscopes), and private (to cre-
ate a function available only to the current scope). The default
scope is the local scope, which follows the same rules as those
of default variable scopes.

The content of a function’s statement block follows the same
rules as the content of a script. Functions support the $args
array, formal parameters, the $input enumerator, cmdlet key-
words, pipeline output, and equivalent return semantics.

NOTE
A common mistake is to call a function as you would call
a method:

$result = GetMyResults($item1, $item2)

PowerShell treats functions as it treats scripts and other
commands, so this should instead be:

$result = GetMyResults $item1 $item2

The first command passes an array that contains the
items $item1 and $item2 to the GetMyResults function.

A filter is simply a function where the statements are treated as
though they are contained within a process statement block.
For more information about process statement blocks, see
“Cmdlet keywords in commands” on page 62.

Writing Scripts, Reusing Functionality | 51

NOTE
Commands in your script can access only functions that
have already been defined. This can often make large
scripts difficult to understand when the beginning of the
script is composed entirely of helper functions. Struc-
turing a script in the following manner often makes it
more clear:

function Main
{
 (...)
 HelperFunction
 (...)
}

function HelperFunction
{
 (...)
}

. Main

Writing script blocks
$objectReference =
{
 statement block
}

PowerShell supports script blocks, which act exactly like un-
named functions and scripts. Like both scripts and functions,
the content of a script block’s statement block follows the same
rules as the content of a function or script. Script blocks sup-
port the $args array, formal parameters, the $input enumera-
tor, cmdlet keywords, pipeline output, and equivalent return
semantics.

As with both scripts and functions, you can either invoke or
dot-source a script block. Since a script block does not have a
name, you either invoke it directly (& { "Hello"}) or invoke the
variable (& $objectReference) that contains it.

52 | Chapter 1: PowerShell Language and Environment

Running Commands
There are two ways to execute a command (script, function,
or script block): by invoking it or by dot-sourcing it.

Invoking
Invoking a command runs the commands inside it. Unless ex-
plicitly defined with the GLOBAL scope keyword, variables and
functions defined in the script do not persist once the script
exits.

NOTE
By default, a security feature in PowerShell called the
Execution Policy prevents scripts from running. When
you want to enable scripting in PowerShell, you must
change this setting. To understand the different execu-
tion policies available to you, type Get-Help about_sign
ing. After selecting an execution policy, use the Set-Exe
cutionPolicy cmdlet to configure it:

Set-ExecutionPolicy RemoteSigned

If the command name has no spaces, simply type its name:

c:\temp\Invoke-Commands.ps1 parameter1 parameter2 ...
Invoke-MyFunction parameter1 parameter2 ...

You can use either a fully qualified path or a path relative to
the current location. If the script is in the current directory, you
must explicitly say so:

.\Invoke-Commands.ps1 parameter1 parameter2 ...

If the command’s name has a space (or the command has no
name, in the case of a script block), you invoke the command
by using the invoke/call operator (&) with the command name
as the parameter.

& "C:\Script Directory\Invoke-Commands.ps1" parameter1
 parameter2 ...

Writing Scripts, Reusing Functionality | 53

Script blocks have no name, so you place the variable holding
them after the invocation operator:

$scriptBlock = { "Hello World" }
& $scriptBlock parameter1 parameter2 ...

If you want to invoke the command within the context of a
module, provide a reference to that module as part of the
invocation:

$module = Get-Module PowerShellCookbook
& $module Invoke-MyFunction parameter1 parameter2 ...
& $module $scriptBlock parameter1 parameter2 ...

Dot-sourcing
Dot-sourcing a command runs the commands inside it. Unlike
simply invoking a command, variables and functions defined
in the script do persist after the script exits.

You invoke a script by using the dot operator (.) and providing
the command name as the parameter:

. "C:\Script Directory\Invoke-Commands.ps1" Parameters

. Invoke-MyFunction parameters

. $scriptBlock parameters

When dot-sourcing a script, you can use either a fully qualified
path or a path relative to the current location. If the script is in
the current directory, you must explicitly say so:

. .\Invoke-Commands.ps1 Parameters

If you want to dot-source the command within the context of
a module, provide a reference to that module as part of the
invocation:

$module = Get-Module PowerShellCookbook
. $module Invoke-MyFunction parameters
. $module $scriptBlock parameters

Parameters
Commands that require or support user input do so through
parameters. You can use the Get-Command cmdlet to see the pa-
rameters supported by a command:

54 | Chapter 1: PowerShell Language and Environment

PS > Get-Command Stop-Process -Syntax

Stop-Process [-Id] <int[]> [-PassThru] [-Force] [-WhatIf]
 [-Confirm] [<CommonParameters>]
Stop-Process -Name <string[]> [-PassThru] [-Force]
 [-WhatIf] [-Confirm] [<CommonParameters>]
Stop-Process [-InputObject] <Process[]> [-PassThru]
 [-Force] [-WhatIf] [-Confirm] [<CommonParameters>]

In this case, the supported parameters of the Stop-Process
command are Id, Name, InputObject, PassThru, Force, WhatIf,
and Confirm.

To supply a value for a parameter, use a dash character, fol-
lowed by the parameter name, followed by a space, and then
the parameter value.

Stop-Process -Id 1234

If the parameter value contains spaces, surround it with quotes:

Stop-Process -Name "Process With Spaces"

If a variable contains a value that you want to use for a param-
eter, supply that through PowerShell’s regular variable refer-
ence syntax:

$name = "Process With Spaces"
Stop-Process -Name $name

If you want to use other PowerShell language elements as a
parameter value, surround the value with parentheses:

Get-Process -Name ("Power" + "Shell")

You only need to supply enough of the parameter name to dis-
ambiguate it from the rest of the parameters.

Stop-Process -N "Process With Spaces"

If a command’s syntax shows the parameter name in square
brackets (such as [-Id]), then it is positional and you may omit
the parameter name and supply only the value. PowerShell
supplies these unnamed values to parameters in the order of
their position.

Stop-Process 1234

Writing Scripts, Reusing Functionality | 55

Rather than explicitly providing parameter names and values,
you can provide a hashtable that defines them and use the
splatting operator:

$parameters = @{
 Path = "c:\temp"
 Recurse = $true
}

Get-ChildItem @parameters

To define the default value to be used for the parameter of a
command (if the parameter value is not specified directly), as-
sign a value to the PSDefaultParameterValues hashtable. The
keys of this hashtable are command names and parameter
names, separated by a colon. Either (or both) may use wild-
cards. The values of this hashtable are either simple parameter
values, or script blocks that will be evaluated dynamically.

PS > $PSDefaultParameterValues["Get-Process:ID"] = $pid
PS > Get-Process

PS > $PSDefaultParameterValues["Get-Service:Name"] = {
 Get-Service -Name * | Foreach-Object Name | Get-Random
 }
PS > Get-Service

Providing Input to Commands
PowerShell offers several options for processing input to a
command.

Argument array
To access the command-line arguments by position, use the
argument array that PowerShell places in the $args special
variable:

$firstArgument = $args[0]
$secondArgument = $args[1]
$argumentCount = $args.Count

56 | Chapter 1: PowerShell Language and Environment

Formal parameters
To define a command with simple parameter support:

param(
 [TypeName] $VariableName = Default,
 ...
)

To define one with support for advanced functionality:

[CmdletBinding(cmdlet behavior customizations)]
param(
 [Parameter(Mandatory = $true, Position = 1, ...)]
 [Alias("MyParameterAlias"]
 [...]
 [TypeName] $VariableName = Default,
 ...
)

Formal parameters let you benefit from some of the many ben-
efits of PowerShell’s consistent command-line parsing engine.

PowerShell exposes your parameter names (for example,
$VariableName) the same way that it exposes parameters in
cmdlets. Users need to type only enough of your parameter
name to disambiguate it from the rest of the parameters.

If you define a command with simple parameter support,
PowerShell attempts to assign the input to your parameters by
their position if the user does not type parameter names.

When you add the [CmdletBinding()] attribute,
[Parameter()] attribute, or any of the validation attributes,
PowerShell adds support for advanced parameter validation.

Command behavior customizations
The elements of the [CmdletBinding()] attribute describe how
your script or function interacts with the system.

SupportsShouldProcess = $true
If $true, enables the -WhatIf and -Confirm parameters,
which tells the user that your command modifies the sys-
tem and can be run in one of these experimental modes.
When specified, you must also call the $psCmdlet.Should

Writing Scripts, Reusing Functionality | 57

Process() method before modifying system state. When
not specified, the default is $false.

DefaultParameterSetName = name
Defines the default parameter set name of this command.
This is used to resolve ambiguities when parameters de-
clare multiple sets of parameters and the user input
doesn’t supply enough information to pick between avail-
able parameter sets. When not specified, the command
has no default parameter set name.

ConfirmImpact = "High"
Defines this command as one that should have its confir-
mation messages (generated by the $psCmdlet.ShouldPro
cess() method) shown by default. More specifically,
PowerShell defines three confirmation impacts: Low,
Medium, and High. PowerShell generates the cmdlet’s con-
firmation messages automatically whenever the cmdlet’s
impact level is greater than the preference variable. When
not specified, the command’s impact is Medium.

Parameter attribute customizations
The elements of the [Parameter()] attribute mainly define how
your parameter behaves in relation to other parameters. All
elements are optional.

Mandatory = $true
Defines the parameter as mandatory. If the user doesn’t
supply a value to this parameter, PowerShell automati-
cally prompts him for it. When not specified, the param-
eter is optional.

Position = position
Defines the position of this parameter. This applies when
the user provides parameter values without specifying the
parameter they apply to (e.g., Argument2 in Invoke-MyFunc
tion -Param1 Argument1 Argument2). PowerShell supplies
these values to parameters that have defined a Position,
from lowest to highest. When not specified, the name of
this parameter must be supplied by the user.

58 | Chapter 1: PowerShell Language and Environment

ParameterSetName = name
Defines this parameter as a member of a set of other re-
lated parameters. Parameter behavior for this parameter
is then specific to this related set of parameters, and the
parameter exists only in the parameter sets that it is de-
fined in. This feature is used, for example, when the user
may supply only a Name or ID. To include a parameter in
two or more specific parameter sets, use two or more
[Parameter()] attributes. When not specified, this param-
eter is a member of all parameter sets.

ValueFromPipeline = $true
Declares this parameter as one that directly accepts pipe-
line input. If the user pipes data into your script or func-
tion, PowerShell assigns this input to your parameter in
your command’s process {} block. When not specified,
this parameter does not accept pipeline input directly.

ValueFromPipelineByPropertyName = $true
Declares this parameter as one that accepts pipeline input
if a property of an incoming object matches its name. If
this is true, PowerShell assigns the value of that property
to your parameter in your command’s process {} block.
When not specified, this parameter does not accept pipe-
line input by property name.

ValueFromRemainingArguments = $true
Declares this parameter as one that accepts all remaining
input that has not otherwise been assigned to positional
or named parameters. Only one parameter can have this
element. If no parameter declares support for this capa-
bility, PowerShell generates an error for arguments that
cannot be assigned.

Parameter validation attributes
In addition to the [Parameter()] attribute, PowerShell lets you
apply other attributes that add behavior or validation con-
straints to your parameters. All validation attributes are
optional.

Writing Scripts, Reusing Functionality | 59

[Alias(" name ")]
Defines an alternate name for this parameter. This is es-
pecially helpful for long parameter names that are de-
scriptive but have a more common colloquial term. When
not specified, the parameter can be referred to only by the
name you originally declared.

[AllowNull()]
Allows this parameter to receive $null as its value. This is
required only for mandatory parameters. When not speci-
fied, mandatory parameters cannot receive $null as their
value, although optional parameters can.

[AllowEmptyString()]
Allows this string parameter to receive an empty string as
its value. This is required only for mandatory parameters.
When not specified, mandatory string parameters cannot
receive an empty string as their value, although optional
string parameters can. You can apply this to parameters
that are not strings, but it has no impact.

[AllowEmptyCollection()]
Allows this collection parameter to receive an empty col-
lection as its value. This is required only for mandatory
parameters. When not specified, mandatory collection
parameters cannot receive an empty collection as their
value, although optional collection parameters can. You
can apply this to parameters that are not collections, but
it has no impact.

[ValidateCount(lower limit, upper limit)]
Restricts the number of elements that can be in a collec-
tion supplied to this parameter. When not specified,
mandatory parameters have a lower limit of one element.
Optional parameters have no restrictions. You can apply
this to parameters that are not collections, but it has no
impact.

[ValidateLength(lower limit, upper limit)]
Restricts the length of strings that this parameter can ac-
cept. When not specified, mandatory parameters have a
lower limit of one character. Optional parameters have no

60 | Chapter 1: PowerShell Language and Environment

restrictions. You can apply this to parameters that are not
strings, but it has no impact.

[ValidatePattern("regular expression ")]
Enforces a pattern that input to this string parameter must
match. When not specified, string inputs have no pattern
requirements. You can apply this to parameters that are
not strings, but it has no impact.

[ValidateRange(lower limit, upper limit)]
Restricts the upper and lower limit of numerical argu-
ments that this parameter can accept. When not specified,
parameters have no range limit. You can apply this to pa-
rameters that are not numbers, but it has no impact.

[ValidateScript({ script block })]
Ensures that input supplied to this parameter satisfies the
condition that you supply in the script block. PowerShell
assigns the proposed input to the $_ (or $PSItem) variable,
and then invokes your script block. If the script block re-
turns $true (or anything that can be converted to $true,
such as nonempty strings), PowerShell considers the val-
idation to have been successful.

[ValidateSet("First Option", "Second Option", ..., "Last
Option")]

Ensures that input supplied to this parameter is equal to
one of the options in the set. PowerShell uses its standard
meaning of equality during this comparison: the same
rules used by the -eq operator. If your validation requires
nonstandard rules (such as case-sensitive comparison of
strings), you can instead write the validation in the body
of the script or function.

[ValidateNotNull()]
Ensures that input supplied to this parameter is not null.
This is the default behavior of mandatory parameters, so
this is useful only for optional parameters. When applied
to string parameters, a $null parameter value gets instead
converted to an empty string.

Writing Scripts, Reusing Functionality | 61

[ValidateNotNullOrEmpty()]
Ensures that input supplied to this parameter is not null
or empty. This is the default behavior of mandatory pa-
rameters, so this is useful only for optional parameters.
When applied to string parameters, the input must be a
string with a length greater than one. When applied to
collection parameters, the collection must have at least
one element. When applied to other types of parameters,
this attribute is equivalent to the [ValidateNotNull()]
attribute.

Pipeline input
To access the data being passed to your command via the pipe-
line, use the input enumerator that PowerShell places in the
$input special variable:

foreach($element in $input)
{
 "Input was: $element"
}

The $input variable is a .NET enumerator over the pipeline
input. Enumerators support streaming scenarios very effi-
ciently but do not let you access arbitrary elements as you
would with an array. If you want to process their elements
again, you must call the Reset() method on the $input enu-
merator once you reach the end.

If you need to access the pipeline input in an unstructured way,
use the following command to convert the input enumerator
to an array:

$inputArray = @($input)

Cmdlet keywords in commands
When pipeline input is a core scenario of your command, you
can include statement blocks labeled begin, process, and end:

param(...)

begin
{

62 | Chapter 1: PowerShell Language and Environment

 ...
}
process
{
 ...
}
end
{
 ...
}

PowerShell executes the begin statement when it loads your
command, the process statement for each item passed down
the pipeline, and the end statement after all pipeline input has
been processed. In the process statement block, the $_ (or
$PSItem) variable represents the current pipeline object.

When you write a command that includes these keywords, all
the commands in your script must be contained within the
statement blocks.

$MyInvocation automatic variable
The $MyInvocation automatic variable contains information
about the context under which the script was run, including
detailed information about the command (MyCommand), the
script that defines it (ScriptName), and more.

Retrieving Output from Commands
PowerShell provides three primary ways to retrieve output
from a command.

Pipeline output
 any command

The return value/output of a script is any data that it generates
but does not capture. If a command contains:

"Text Output"
5*5

Writing Scripts, Reusing Functionality | 63

then assigning the output of that command to a variable creates
an array with the two values Text Output and 25.

Return statement
return value

The statement:

return $false

is simply a short form for pipeline output:

$false
return

Exit statement
exit errorlevel

The exit statement returns an error code from the current
command or instance of PowerShell. If called anywhere in a
script (inline, in a function, or in a script block), it exits the
script. If called outside of a script (for example, a function), it
exits PowerShell. The exit statement sets the $LastExitCode
automatic variable to errorLevel. In turn, that sets the $? au-
tomatic variable to $false if errorLevel is not zero.

NOTE
Type Get-Help about_automatic_variables for more in-
formation about automatic variables.

Help Documentation
PowerShell automatically generates help content out of spe-
cially tagged comments in your command:

<#

.SYNOPSIS
Runs a ...

.EXAMPLE

64 | Chapter 1: PowerShell Language and Environment

PS > ...

#>

param(
 ## Help content for the Param1 parameter
 $Param1
)

Help-specific comments must be the only comments in a com-
ment block. If PowerShell discovers a nonhelp comment, it
discontinues looking for comments in that comment block. If
you need to include nonhelp comments in a comment block,
place them in a separate block of comments. The following are
the most typical help comments used in a comment block:

.SYNOPSIS
A short summary of the command, ideally a single sen-
tence.

.DESCRIPTION
A more detailed description of the command.

.PARAMETER name
A description of parameter name, with one for each pa-
rameter you want to describe. While you can write
a .PARAMETER comment for each parameter, PowerShell
also supports comments written directly above the pa-
rameter. Putting parameter help alongside the actual pa-
rameter makes it easier to read and maintain.

.EXAMPLE
An example of this command in use, with one for each
example you want to provide. PowerShell treats the line
immediately beneath the .EXAMPLE tag as the example
command. If this line doesn’t contain any text that looks
like a prompt, PowerShell adds a prompt before it. It treats
lines that follow the initial line as additional output and
example commentary.

Writing Scripts, Reusing Functionality | 65

.INPUTS
A short summary of pipeline input(s) supported by this
command. For each input type, PowerShell’s built-in help
follows this convention:

System.String
 You can pipe a string that contains a path to
 Get-ChildItem.

.OUTPUTS
A short summary of items generated by this command.
For each output type, PowerShell’s built-in help follows
this convention:

System.ServiceProcess.ServiceController
 Get-Service returns objects that represent the
 services on the computer.

.NOTES
Any additional notes or remarks about this command.

.LINK
A link to a related help topic or command, with
one .LINK tag per link. If the related help topic is a URL,
PowerShell launches that URL when the user supplies the
-Online parameter to Get-Help for your command.

Managing Errors
PowerShell supports two classes of errors: nonterminating and
terminating. It collects both types of errors as a list in the
$error automatic variable.

Nonterminating Errors
Most errors are nonterminating errors, in that they do not halt
execution of the current cmdlet, script, function, or pipeline.
When a command outputs an error (via PowerShell’s error-
output facilities), PowerShell writes that error to a stream
called the error output stream.

66 | Chapter 1: PowerShell Language and Environment

You can output a nonterminating error using the Write-Error
cmdlet (or the WriteError() API when writing a cmdlet).

The $ErrorActionPreference automatic variable lets you con-
trol how PowerShell handles nonterminating errors. It sup-
ports the following values, shown in Table 1-14.

Table 1-14. ErrorActionPreference automatic variable values

Value Meaning

Ignore Do not display errors, and do not add them to the $error collection.
Only supported when supplied to the ErrorAction parameter of a
command.

Silently
Continue

Do not display errors, but add them to the $error collection.

Stop Treat nonterminating errors as terminating errors.

Continue Display errors, but continue execution of the current cmdlet, script,
function, or pipeline. This is the default.

Inquire Display a prompt that asks how PowerShell should treat this error.

Most cmdlets let you configure this explicitly by passing one
of these values to the ErrorAction parameter.

Terminating Errors
A terminating error halts execution of the current cmdlet,
script, function, or pipeline. If a command (such as a cmdlet
or .NET method call) generates a structured exception (for ex-
ample, if you provide a method with parameters outside their
valid range), PowerShell exposes this as a terminating error.
PowerShell also generates a terminating error if it fails to parse
an element of your script, function, or pipeline.

You can generate a terminating error in your script using the
throw keyword:

throw message

Managing Errors | 67

NOTE
In your own scripts and cmdlets, generate terminating
errors only when the fundamental intent of the opera-
tion is impossible to accomplish. For example, failing to
execute a command on a remote server should be
considered a nonterminating error, whereas failing to
connect to the remote server altogether should
be considered a terminating error.

You can intercept terminating errors through the try, catch,
and finally statements, as supported by many other program-
ming languages:

try
{
 statement block
}
catch [exception type]
{
 error handling block
}
catch [alternate exception type]
{
 alternate error handling block
}
finally
{
 cleanup block
}

After a try statement, you must provide a catch statement, a
finally statement, or both. If you specify an exception type
(which is optional), you may specify more than one catch
statement to handle exceptions of different types. If you specify
an exception type, the catch block applies only to terminating
errors of that type.

PowerShell also lets you intercept terminating errors if you de-
fine a trap statement before PowerShell encounters that error:

trap [exception type]
{
 statement block

68 | Chapter 1: PowerShell Language and Environment

 [continue or break]
}

If you specify an exception type, the trap statement applies
only to terminating errors of that type.

Within a catch block or trap statement, the $_ (or $PSItem)
variable represents the current exception or error being pro-
cessed.

If specified, the continue keyword tells PowerShell to continue
processing your script, function, or pipeline after the point at
which it encountered the terminating error.

If specified, the break keyword tells PowerShell to halt pro-
cessing the rest of your script, function, or pipeline after the
point at which it encountered the terminating error. The de-
fault mode is break, and it applies if you specify neither break
nor continue.

Formatting Output
Pipeline | Formatting Command

When objects reach the end of the output pipeline, PowerShell
converts them to text to make them suitable for human con-
sumption. PowerShell supports several options to help you
control this formatting process, as listed in Table 1-15.

Table 1-15. PowerShell formatting commands

Formatting
command

Result

Format-Table
Properties

Formats the properties of the input objects as a table, including
only the object properties you specify. If you do not specify a prop-
erty list, PowerShell picks a default set.

In addition to supplying object properties, you may also provide
advanced formatting statements:

PS > Get-Process | `
 Format-Table -Auto Name,`
 @{Label="HexId";
 Expression={ "{0:x}" -f $_.Id}

Formatting Output | 69

Formatting
command

Result

 Width=4
 Align="Right"
 }

The advanced formatting statement is a hashtable with the keys
Label and Expression (or any short form of them). The value
of the expression key should be a script block that returns a result
for the current object (represented by the $_ variable).

For more information about the Format-Table cmdlet, type
Get-Help Format-Table.

Format-List
Properties

Formats the properties of the input objects as a list, including only
the object properties you specify. If you do not specify a property
list, PowerShell picks a default set.

The Format-List cmdlet supports the advanced formatting
statements as used by the Format-Table cmdlet.

The Format-List cmdlet is the one you will use most often to
get a detailed summary of an object’s properties.

The command Format-List * returns all properties, but it does
not include those that PowerShell hides by default. The command
Format-List * -Force returns all properties.

For more information about the Format-List cmdlet, type
Get-Help Format-List.

Format-Wide
Property

Formats the properties of the input objects in an extremely terse
summary view. If you do not specify a property, PowerShell picks
a default.

In addition to supplying object properties, you can also provide
advanced formatting statements:

PS > Get-Process | `
 Format-Wide -Auto `
 @{ Expression={ "{0:x}" -f $_.Id} }

The advanced formatting statement is a hashtable with the key
Expression (or any short form of it). The value of the expression
key should be a script block that returns a result for the current
object (represented by the $_ variable).

70 | Chapter 1: PowerShell Language and Environment

Formatting
command

Result

For more information about the Format-Wide cmdlet, type
Get-Help Format-Wide.

Custom Formatting Files
All the formatting defaults in PowerShell (for example, when
you do not specify a formatting command, or when you do not
specify formatting properties) are driven by the *.For-
mat.Ps1Xml files in the installation directory.

To create your own formatting customizations, use these files
as a source of examples, but do not modify them directly. In-
stead, create a new file and use the Update-FormatData cmdlet
to load your customizations. The Update-FormatData cmdlet
applies your changes to the current instance of PowerShell. If
you wish to load them every time you launch PowerShell, call
Update-FormatData in your profile script. The following com-
mand loads Format.custom.ps1xml from the same directory as
your profile:

$formatFile = Join-Path (Split-Path $profile) "Format.
 Custom.Ps1Xml"
Update-FormatData -PrependPath $typesFile

Capturing Output
There are several ways to capture the output of commands in
PowerShell, as listed in Table 1-16.

Table 1-16. Capturing output in PowerShell

Command Result

$variable =
Command

Stores the objects produced by the PowerShell command into
$variable.

$variable =
Command | Out-
String

Stores the visual representation of the PowerShell command
into $variable. This is the PowerShell command after it’s
been converted to human-readable output.

Capturing Output | 71

Command Result

$variable =
NativeCommand

Stores the (string) output of the native command into $vari
able. PowerShell stores this as a list of strings—one for each
line of output from the native command.

Command
-OutVariable
variable

For most commands, stores the objects produced by the Pow-
erShell command into $variable. The parameter -OutVari
able can also be written -Ov.

Command > File Redirects the visual representation of the PowerShell (or stan-
dard output of a native command) into File, overwriting
File if it exists. Errors are not captured by this redirection.

Command >>
File

Redirects the visual representation of the PowerShell (or stan-
dard output of a native command) into File, appending to
File if it exists. Errors are not captured by this redirection.

Command 2>
File

Redirects the errors from the PowerShell or native command
into File, overwriting File if it exists.

Command n>
File

Redirects stream number n into File, overwriting File if it
exists. Supported streams are 2 for error, 3 for warning, 4 for
verbose, 5 for debug, and * for all.

Command 2>>
File

Redirects the errors from the PowerShell or native command
into File, appending to File if it exists.

Command n>>
File

Redirects stream number n into File, appending to File if it
exists. Supported streams are 2 for error, 3 for warning, 4 for
verbose, 5 for debug, and * for all.

Command > File
2>&1

Redirects both the error and standard output streams of the
PowerShell or native
command into File, overwriting File if it exists.

Command >>
File 2>&1

Redirects both the error and standard output streams of the
PowerShell or native command into File, appending to
File if it exists.

Common Customization Points
As useful as it is out of the box, PowerShell offers several
avenues for customization and personalization.

72 | Chapter 1: PowerShell Language and Environment

Console Settings
The Windows PowerShell user interface offers several features
to make your shell experience more efficient.

Adjust your window size
In the System menu (right-click the title bar at the top left of
the console window), select Properties→Layout. The Window
Size options let you control the actual window size (how big
the window appears on screen), whereas the Screen Buffer Size
options let you control the virtual window size (how much
content the window can hold). If the screen buffer size is larger
than the actual window size, the console window changes to
include scrollbars. Increase the virtual window height to make
PowerShell store more output from earlier in your session. If
you launch PowerShell from the Start menu, PowerShell
launches with some default modifications to the window size.

Make text selection easier
In the System menu, click Options→QuickEdit Mode. Quick-
Edit mode lets you use the mouse to efficiently copy and paste
text into or out of your PowerShell console. By default,
PowerShell launches with QuickEdit mode enabled.

Use hotkeys to operate the shell more efficiently
The Windows PowerShell console supports many hotkeys that
help make operating the console more efficient, as shown in
Table 1-17.

Table 1-17. Windows PowerShell hotkeys

Hotkey Meaning

Windows key-r, and
then type
powershell

Launch Windows PowerShell.

Up arrow Scan backward through your command history.

Down arrow Scan forward through your command history.

Common Customization Points | 73

Hotkey Meaning

Page Up Display the first command in your command history.

Page Down Display the last command in your command history.

Left arrow Move cursor one character to the left on your command line.

Right arrow Move cursor one character to the right on your command line.
If at the end of the line, inserts a character from the text of your
last command at that position.

Home Move the cursor to the beginning of the command line.

End Move the cursor to the end of the command line.

Ctrl-left arrow Move the cursor one word to the left on your command line.

Ctrl-right arrow Move the cursor one word to the right on your command line.

Alt-space, e, l Scroll through the screen buffer.

Alt-space, e, f Search for text in the screen buffer.

Alt-space, e, k Select text to be copied from the screen buffer.

Alt-space, e, p Paste clipboard contents into the Windows PowerShell console.

Alt-space, c Close the Windows PowerShell console.

Ctrl-c Cancel the current operation.

Ctrl-break Forcibly close the Windows PowerShell window.

Ctrl-home Deletes characters from the beginning of the current command
line up to (but not including) the current cursor position.

Ctrl-end Deletes characters from (and including) the current cursor po-
sition to the end of the current command line.

F1 Move cursor one character to the right on your command line.
If at the end of the line, inserts a character from the text of your
last command at that position.

F2 Creates a new command line by copying your last command
line up to the character that you type.

F3 Complete the command line with content from your last com-
mand line, from the current cursor position to the end.

F4 Deletes characters from your cursor position up to (but not in-
cluding) the character that you type.

F5 Scan backward through your command history.

74 | Chapter 1: PowerShell Language and Environment

Hotkey Meaning

F7 Interactively select a command from your command history.
Use the arrow keys to scroll through the window that appears.
Press the Enter key to execute the command, or use the right
arrow key to place the text on your command line instead.

F8 Scan backward through your command history, only displaying
matches for commands that match the text you’ve typed so far
on the command line.

F9 Invoke a specific numbered command from your command his-
tory. The numbers of these commands correspond to the num-
bers that the command-history selection window (F7) shows.

Alt-F7 Clear the command history list.

NOTE
While useful in their own right, the hotkeys listed in
Table 1-17 become even more useful when you map
them to shorter or more intuitive keystrokes using a hot-
key program such as the free (AutoHotkey).

Profiles
Windows PowerShell automatically runs the four scripts listed
in Table 1-18 during startup. Each, if present, lets you cus-
tomize your execution environment. PowerShell runs anything
you place in these files as though you had entered it manually
at the command line.

Table 1-18. Windows PowerShell profiles

Profile purpose Profile location

Customization of all PowerShell sessions, in-
cluding PowerShell hosting applications for
all users on the system

InstallationDirectory\profile.ps1

Customization of PowerShell.exe sessions for
all users on the system

InstallationDirectory\ Microsoft.
PowerShell _profile.ps1

Common Customization Points | 75

http://www.autohotkey.com

Profile purpose Profile location

Customization of all PowerShell sessions, in-
cluding PowerShell hosting applications

<My Documents>\WindowsPowerShell
\profile.ps1

Typical customization of PowerShell.exe
sessions

<My Documents>\WindowsPowerShell
\ Microsoft.PowerShell _profile.ps1

PowerShell makes editing your profile script simple by defining
the automatic variable $profile. By itself, it points to the “cur-
rent user, PowerShell.exe” profile. In addition, the $profile
variable defines additional properties that point to the other
profile locations:

PS > $profile | Format-List -Force

AllUsersAllHosts : C:\Windows\System32\
 WindowsPowerShell\v1.0\
 profile.ps1
AllUsersCurrent-
Host : C:\Windows\System32\
 WindowsPowerShell\v1.0\
 Microsoft.PowerShell_profile.ps1
CurrentUserAll-
Hosts : E:\Lee\WindowsPowerShell\profile.
 ps1
CurrentUser-
CurrentHost : E:\Lee\WindowsPowerShell\
 Microsoft.PowerShell_
 profile.ps1

To create a new profile, type:

New-Item -Type file -Force $profile

To edit this profile, type:

notepad $profile

Prompts
To customize your prompt, add a prompt function to your pro-
file. This function returns a string. For example:

76 | Chapter 1: PowerShell Language and Environment

function Prompt
{
 "PS [$env:COMPUTERNAME] >"
}

Tab Completion
You can define a TabExpansion2 function to customize the way
that Windows PowerShell completes properties, variables, pa-
rameters, and files when you press the Tab key.

Your TabExpansion function overrides the one that PowerShell
defines by default, though, so you may want to use its defini-
tion as a starting point:

Get-Content function:\TabExpansion2

User Input
You can define a PSConsoleHostReadLine function to customize
the way that the Windows PowerShell console host (not the
ISE) reads input from the user. This function is responsible for
handling all of the user’s keypresses, and finally returning the
command that PowerShell should invoke.

Command Resolution
You can intercept PowerShell’s command resolution behavior
in three places by assigning a script block to one or all of the
PreCommandLookupAction, PostCommandLookupAction, or Command
NotFoundAction properties of $executionContext.Session
State.InvokeCommand.

PowerShell invokes the PreCommandLookupAction after the user
types a command name, but before it has tried to resolve the
command. It invokes the PostCommandLookupAction once it has
resolved a command, but before it executes the command. It
invokes the CommandNotFoundAction when a command is not
found, but before it generates an error message. Each script
block receives two arguments: CommandName and
CommandLookupEventArgs.

Common Customization Points | 77

$executionContext.SessionState.InvokeCommand.
 CommandNotFoundAction = {
 param($CommandName, $CommandLookupEventArgs)

 (...)
}

If your script block assigns a script block to the CommandScript
Block property of the CommandLookupEventArgs or assigns a
CommandInfo to the Command property of the CommandLookupEven
tArgs, PowerShell will use that script block or command, re-
spectively. If your script block sets the StopSearch property to
true, PowerShell will do no further command resolution.

78 | Chapter 1: PowerShell Language and Environment

CHAPTER 2

Regular Expression Reference

Regular expressions play an important role in most text parsing
and text matching tasks. They form an important underpin-
ning of the -split and -match operators, the switch statement,
the Select-String cmdlet, and more. Tables 2-1 through 2-9
list commonly used regular expressions.

Table 2-1. Character classes: patterns that represent sets of characters

Character class Matches

. Any character except for a newline. If the regular expression uses
the SingleLine option, it matches any character.

PS > "T" -match '.'
True

[characters] Any character in the brackets. For example: [aeiou].

PS > "Test" -match '[Tes]'
True

[^characters] Any character not in the brackets. For example: [^aeiou].

PS > "Test" -match '[^Tes]'
False

[start-end] Any character between the characters start and end, inclusive.
You may include multiple character ranges between
the brackets. For example, [a-eh-j].

PS > "Test" -match '[e-t]'
True

79

Character class Matches

[^start-end] Any character not between any of the character ranges start
through end, inclusive. You may include multiple character
ranges between the brackets. For example, [^a-eh-j].

PS > "Test" -match '[^e-t]'
False

\p{
character class
}

Any character in the Unicode group or block range specified
by {character class}.

PS > "+" -match '\p{Sm}'
True

\P{character
class}

Any character not in the Unicode group or block range specified
by {character class}.

PS > "+" -match '\P{Sm}'
False

\w Any word character. Note that this is the Unicode definition of a
word character, which includes digits, as well as many math
symbols and various other symbols.

PS > "a" -match '\w'
True

\W Any nonword character.

PS > "!" -match '\W'
True

\s Any whitespace character.

PS > "`t" -match '\s'
True

\S Any nonwhitespace character.

PS > " `t" -match '\S'
False

\d Any decimal digit.

80 | Chapter 2: Regular Expression Reference

Character class Matches
PS > "5" -match '\d'
True

\D Any character that isn’t a decimal digit.

PS > "!" -match '\D'
True

Table 2-2. Quantifiers: expressions that enforce quantity on the
preceding expression

Quantifier Meaning

<none> One match.

PS > "T" -match 'T'
True

* Zero or more matches, matching as much as
possible.

PS > "A" -match 'T*'
True
PS > "TTTTT" -match '^T*$'
True

PS > 'ATTT' -match 'AT*'; $Matches[0]
True
ATTT

+ One or more matches, matching as much as possible.

PS > "A" -match 'T+'
False
PS > "TTTTT" -match '^T+$'
True

PS > 'ATTT' -match 'AT+'; $Matches[0]
True
ATTT

? Zero or one matches, matching as much as possible.

PS > "TTTTT" -match '^T?$'
False

PS > 'ATTT' -match 'AT?'; $Matches[0]

Regular Expression Reference | 81

Quantifier Meaning
True
AT

{n} Exactly n matches.

PS > "TTTTT" -match '^T{5}$'
True

{n,} n or more matches, matching as much as possible.

PS > "TTTTT" -match '^T{4,}$'
True

{n,m} Between n and m matches (inclusive), matching as much as pos-
sible.

PS > "TTTTT" -match '^T{4,6}$'
True

*? Zero or more matches, matching as little as possible.

PS > "A" -match '^AT*?$'
True

PS > 'ATTT' -match 'AT*?'; $Matches[0]
True
A

+? One or more matches, matching as little as possible.

PS > "A" -match '^AT+?$'
False

PS > 'ATTT' -match 'AT+?'; $Matches[0]
True
AT

?? Zero or one matches, matching as little as possible.

PS > "A" -match '^AT??$'
True

PS > 'ATTT' -match 'AT??'; $Matches[0]
True
A

{n}? Exactly n matches.

PS > "TTTTT" -match '^T{5}?$'
True

82 | Chapter 2: Regular Expression Reference

Quantifier Meaning

{n,}? n or more matches, matching as little as possible.

PS > "TTTTT" -match '^T{4,}?$'
True

{n,m}? Between n and m matches (inclusive), matching as little as
possible.

PS > "TTTTT" -match '^T{4,6}?$'
True

Table 2-3. Grouping constructs: expressions that let you group
characters, patterns, and other expressions

Grouping construct Description

(text) Captures the text matched inside the parentheses. These captures
are named by number (starting at one) based on the order of the
opening parenthesis.

PS > "Hello" -match '^(.*)llo$';
 $matches[1]
True
He

(?<name>) Captures the text matched inside the parentheses.
These captures are named by the name given in name.

PS > "Hello" -match '^(?<One>.*)llo$';
 $matches.One
True
He

(?<name1-name2>) A balancing group definition. This is an advanced regular ex-
pression construct, but lets you match evenly balanced pairs of
terms.

(?:) Noncapturing group.

PS > "A1" -match '((A|B)\d)'; $matches
True

Name Value
---- -----
2 A
1 A1
0 A1

Regular Expression Reference | 83

Grouping construct Description
PS > "A1" -match '((?:A|B)\d)'; $matches
True

Name Value
---- -----
1 A1
0 A1

(?imnsx-imnsx:) Applies or disables the given option for this group. Supported
options are:

i case-insensitive
m multiline
n explicit capture
s singleline
x ignore whitespace

PS > "Te`nst" -match '(T e.st)'
False
PS > "Te`nst" -match '(?sx:T e.st)'
True

(?=) Zero-width positive lookahead assertion. Ensures that the given
pattern matches to the right, without actually performing the
match.

PS > "555-1212" -match '(?=...-)(.*)';
 $matches[1]
True
555-1212

(?!) Zero-width negative lookahead assertion. Ensures that the given
pattern does not match to the right, without actually performing
the match.

PS > "friendly" -match
 '(?!friendly)friend'
False

(?<=) Zero-width positive lookbehind assertion. Ensures that the given
pattern matches to the left, without actually performing the
match.

84 | Chapter 2: Regular Expression Reference

Grouping construct Description
PS > "public int X" -match
 '^.*(?<=public)int .*$'
True

(?<!) Zero-width negative lookbehind assertion. Ensures that the given
pattern does not match to the left, without actually performing
the match.

PS > "private int X" -match
 '^.*(?<!private)int .*$'
False

(?>) Nonbacktracking subexpression. Matches only if this subexpres-
sion can be matched completely.

PS > "Hello World" -match
 '(Hello.*)orld'
True
PS > "Hello World" -match
 '(?>Hello.*)orld'
False

The nonbacktracking version of the subexpression fails to match,
as its complete match would be “Hello World”.

Table 2-4. Atomic zero-width assertions: patterns that restrict where
a match may occur

Assertion Restriction

^ The match must occur at the beginning of the string (or line, if
the Multiline option is in effect).

PS > "Test" -match '^est'
False

$ The match must occur at the end of the string (or line, if the
Multiline option is in effect).

PS > "Test" -match 'Tes$'
False

\A The match must occur at the beginning of the string.

Regular Expression Reference | 85

Assertion Restriction
PS > "The`nTest" -match '(?m:^Test)'
True
PS > "The`nTest" -match '(?m:\ATest)'
False

\Z The match must occur at the end of the string, or before \n at
the end of the string.

PS > "The`nTest`n" -match '(?m:The$)'
True
PS > "The`nTest`n" -match '(?m:The\Z)'
False
PS > "The`nTest`n" -match 'Test\Z'
True

\z The match must occur at the end of the string.

PS > "The`nTest`n" -match 'Test\z'
False

\G The match must occur where the previous match ended. Used
with
System.Text.RegularExpressions.Match.NextMatch()
.

\b The match must occur on a word boundary: the first or last char-
acters in words separated by nonalphanumeric characters.

PS > "Testing" -match 'ing\b'
True

\B The match must not occur on a word boundary.

PS > "Testing" -match 'ing\B'
False

Table 2-5. Substitution patterns: patterns used in a regular expression
replace operation

Pattern Substitution

$number The text matched by group number number.

PS > "Test" -replace "(.*)st",'$1ar'
Tear

${name} The text matched by group named name.

86 | Chapter 2: Regular Expression Reference

Pattern Substitution
PS > "Test" -replace
 "(?<pre>.*)st",'${pre}ar'
Tear

$$ A literal $.

PS > "Test" -replace ".",'$$'
$$$$

$& A copy of the entire match.

PS > "Test" -replace "^.*$",'Found: $&'
Found: Test

$` The text of the input string that precedes the match.

PS > "Test" -replace "est$",'Te$`'
TTeT

$' The text of the input string that follows the match.

PS > "Test" -replace "^Tes",'Res$'''
Restt

$+ The last group captured.

PS > "Testing" -replace "(.*)ing",'$+ed'
Tested

$_ The entire input string.

PS > "Testing" -replace
 "(.*)ing",'String: $_'
String: Testing

Table 2-6. Alternation constructs: expressions that let you perform
either/or logic

Alternation
construct

Description

| Matches any of the terms separated by the vertical bar character.

PS > "Test" -match '(B|T)est'
True

(?(expression)

yes|no)

Matches the yes term if expression matches at this point. Other-
wise, matches the no term. The no term is optional.

PS > "3.14" -match
 '(?(\d)3.14|Pi)'

Regular Expression Reference | 87

Alternation
construct

Description

True
PS > "Pi" -match
 '(?(\d)3.14|Pi)'
True
PS > "2.71" -match
 '(?(\d)3.14|Pi)'
False

(?(name)yes|
no)

Matches the yes term if the capture group named name has a
capture at this point. Otherwise, matches the no term. The no
term is optional.

PS > "123" -match
 '(?<one>1)?(?(one)23|234)'
True
PS > "23" -match
 '(?<one>1)?(?(one)23|234)'
False
PS > "234" -match
 '(?<one>1)?(?(one)23|234)'
True

Table 2-7. Backreference constructs: expressions that refer to a
capture group within the expression

Backreference
construct

Refers to

\number Group number number in the expression.

PS > "|Text|" -match '(.)Text\1'
True
PS > "|Text+" -match '(.)Text\1'
False

\k<name> The group named name in the expression.

PS > "|Text|" -match
 '(?<Symbol>.)Text\k<Symbol>'
True
PS > "|Text+" -match
 '(?<Symbol>.)Text\k<Symbol>'
False

88 | Chapter 2: Regular Expression Reference

Table 2-8. Other constructs: other expressions that modify a regular
expression

Construct Description

(?imnsx-
imnsx)

Applies or disables the given option for the rest of this expression.
Supported options are:

i case-insensitive
m multiline
n explicit capture
s singleline
x ignore whitespace

PS > "Te`nst" -match '(?sx)T e.st'
True

(?#) Inline comment. This terminates at the first closing parenthesis.

PS > "Test" -match '(?# Match 'Test')Test'
True

[to end of line] Comment form allowed when the regular expression has the
IgnoreWhitespace option enabled.

PS > "Test" -match '(?x)Test # Matches Test'
True

Table 2-9. Character escapes: character sequences that represent
another character

Escaped
character

Match

<ordinary
characters>

Characters other than . $ ^ { [(|) * + ? \ match
themselves.

\a A bell (alarm) \u0007.

\b A backspace \u0008 if in a [] character class. In a regular expression,
\b denotes a word boundary (between \w and \W characters) except
within a [] character class, where \b refers to the backspace char-
acter. In a replacement pattern, \b always denotes a backspace.

\t A tab \u0009.

\r A carriage return \u000D.

\v A vertical tab \u000B.

\f A form feed \u000C.

Regular Expression Reference | 89

Escaped
character

Match

\n A new line \u000A.

\e An escape \u001B.

\ddd An ASCII character as octal (up to three digits). Numbers with no
leading zero are treated as backreferences if they have only one digit,
or if they correspond to a capturing group number.

\xdd An ASCII character using hexadecimal representation (exactly two
digits).

\cC An ASCII control character; for example, \cC is Control-C.

\udddd A Unicode character using hexadecimal representation (exactly four
digits).

\ When followed by a character that is not recognized as an escaped
character, matches that character. For example, * is the literal char-
acter *.

90 | Chapter 2: Regular Expression Reference

CHAPTER 3

XPath Quick Reference

Just as regular expressions are the standard way to interact with
plain text, XPath is the standard way to interact with XML.
Because of that, XPath is something you are likely to run across
in your travels. Several cmdlets support XPath queries: Select-
Xml, Get-WinEvent, and more. Tables 3-1 and 3-2 give a quick
overview of XPath concepts.

For these examples, consider this sample XML:

<AddressBook>
 <Person contactType="Personal">
 <Name>Lee</Name>
 <Phone type="home">555-1212</Phone>
 <Phone type="work">555-1213</Phone>
 </Person>
 <Person contactType="Business">
 <Name>Ariel</Name>
 <Phone>555-1234</Phone>
 </Person>
</AddressBook>

Table 3-1. Navigation and selection

Syntax Meaning

/ Represents the root of the XML tree.

For example:

91

Syntax Meaning
PS > $xml | Select-Xml "/" | Select
 -Expand Node

AddressBook

AddressBook

/Node Navigates to the node named Node from the root of the XML tree.

For example:

PS > $xml | Select-Xml "/AddressBook" |
Select
 -Expand Node

Person

{Lee, Ariel}

/Node/*/
Node2

Navigates to the noded named Node2 via Node, allowing any single
node in between.

For example:

PS > $xml | Select-Xml "/AddressBook/*/Name"
| Select -Expand Node

#text

Lee
Ariel

//Node Finds all nodes named Node, anywhere in the XML tree.

For example:

PS > $xml | Select-Xml "//Phone" | Select -
Expand Node

type #text
---- -----
home 555-1212
work 555-1213
 555-1234

.. Retrieves the parent node of the given node.

For example:

92 | Chapter 3: XPath Quick Reference

Syntax Meaning
PS>$xml | Select-Xml "//Phone" | Select -
Expand Node

type #text
---- -----
home 555-1212
work 555-1213
 555-1234

PS>$xml | Select-Xml "//Phone/.." | Select -
Expand Node

contactType Name Phone
----------- ---- -----
Personal Lee {Phone,
Phone}
Business Ariel 555-1234

@ Attribute Accesses the value of the attribute named Attribute.

For example:

PS > $xml | Select-Xml "//Phone/@type" |
Select -Expand Node

#text

home
work

Table 3-2. Comparisons

Syntax Meaning

[] Filtering, similar to the Where-Object cmdlet.

For example:

PS > $xml | Select-Xml "//Person[@contactType =
 'Personal']" | Select -Expand Node

contactType Name Phone
----------- ---- -----
Personal Lee {Phone, Phone}

XPath Quick Reference | 93

Syntax Meaning

PS > $xml | Select-Xml "//Person[Name = 'Lee']" |
 Select -Expand Node

contactType Name Phone
----------- ---- -----
Personal Lee {Phone, Phone}

and Logical and.

or Logical or.

not() Logical negation.

= Equality.

!= Inequality.

94 | Chapter 3: XPath Quick Reference

CHAPTER 4

.NET String Formatting

String Formatting Syntax
The format string supported by the format (-f) operator is a
string that contains format items. Each format item takes the
form of:

{index[,alignment][:formatString]}

index represents the zero-based index of the item in the object
array following the format operator.

alignment is optional and represents the alignment of the item.
A positive number aligns the item to the right of a field of the
specified width. A negative number aligns the item to the left
of a field of the specified width.

PS > ("{0,6}" -f 4.99), ("{0,6:##.00}" -f 15.9)
 4.99
 15.90

formatString is optional and formats the item using that type’s
specific format string syntax (as laid out in Tables 4-1 and 4-2).

95

Standard Numeric Format Strings
Table 4-1 lists the standard numeric format strings. All format
specifiers may be followed by a number between 0 and 99 to
control the precision of the formatting.

Table 4-1. Standard numeric format strings

Format
specifier

Name Description Example

C or c Currency A currency
amount.

PS > "{0:C}" -f 1.23
$1.23

D or d Decimal A decimal
amount (for in-
tegral types).
The precision
specifier controls
the minimum
number of digits
in the result.

PS > "{0:D4}" -f 2
0002

E or e Scientific Scientific (expo-
nential) nota-
tion. The preci-
sion specifier
controls the
number of digits
past the decimal
point.

PS > "{0:E3}" -f [Math]::Pi
3.142E+000

F or f Fixed-
point

Fixed-point no-
tation. The preci-
sion specifier
controls the
number of digits
past the decimal
point.

PS > "{0:F3}" -f [Math]::Pi
3.142

G or g General The most com-
pact representa-
tion (between
fixed-point and

PS > "{0:G3}" -f [Math]::Pi
3.14
PS > "{0:G3}" -f 1mb
1.05E+06

96 | Chapter 4: .NET String Formatting

Format
specifier

Name Description Example

scientific) of the
number. The
precision speci-
fier controls the
number of sig-
nificant digits.

N or n Number The human-
readable form of
the number,
which includes
separators be-
tween number
groups. The pre-
cision specifier
controls the
number of digits
past the decimal
point.

PS > "{0:N4}" -f 1mb
1,048,576.0000

P or p Percent The number
(generally be-
tween 0 and 1)
represented as a
percentage. The
precision speci-
fier controls the
number of digits
past the decimal
point.

PS > "{0:P4}" -f 0.67
67.0000 %

R or r Round-
trip

The Single or
Double number
formatted with a
precision that
guarantees the
string (when
parsed) will re-
sult in the origi-
nal number
again.

PS > "{0:R}" -f (1mb/2.0)
524288
PS > "{0:R}" -f (1mb/9.0)
116508.44444444444

Standard Numeric Format Strings | 97

Format
specifier

Name Description Example

X or x Hexa-
decimal

The number con-
verted to a string
of hexadecimal
digits. The case
of the specifier
controls the case
of the resulting
hexadecimal
digits. The preci-
sion specifier
controls the min-
imum number of
digits in the re-
sulting string.

PS > "{0:X4}" -f 1324
052C

Custom Numeric Format Strings
You can use custom numeric strings, listed in Table 4-2, to
format numbers in ways not supported by the standard format
strings.

Table 4-2. Custom numeric format strings

Format
specifier

Name Description Example

0 Zero
placeholder

Specifies the preci-
sion and width of a
number string. Zeros
not matched by dig-
its in the original
number are output
as zeros.

PS > "{0:00.0}" -f
4.12341234
04.1

Digit
placeholder

Specifies the preci-
sion and width of a
number string. #
symbols not
matched by digits in

PS > "{0:##.#}" -f
4.12341234
4.1

98 | Chapter 4: .NET String Formatting

Format
specifier

Name Description Example

the input number
are not output.

. Decimal
point

Determines the lo-
cation of the deci-
mal.

PS > "{0:##.#}" -f
4.12341234
4.1

, Thou-
sands sep-
arator

When placed be-
tween a zero or digit
placeholder before
the decimal point in
a formatting string,
adds the separator
character between
number groups.

PS > "{0:#,#.#}" -f
1234.121234
1,234.1

, Number
scaling

When placed before
the literal (or im-
plicit) decimal point
in a formatting
string, divides the
input by 1,000. You
can apply this format
specifier more than
once.

PS > "{0:##,,.000}" -f
1048576
1.049

% Percent-
age place-
holder

Multiplies the input
by 100, and inserts
the percent sign
where shown in the
format specifier.

PS > "{0:%##.000}" -f .
68
%68.000

E0

E+0

E-0

e0

e+0

e-0

Scientific
notation

Displays the input in
scientific notation.
The number of zeros
that follow the E de-
fine the minimum
length of the expo-
nent field.

PS > "{0:##.#E000}" -f
2.71828
27.2E-001

Custom Numeric Format Strings | 99

Format
specifier

Name Description Example

' text '

" text "

Literal
string

Inserts the provided
text literally into the
output without af-
fecting formatting.

PS > "{0:#.00'##'}" -f
2.71828
2.72##

; Section
separator

Allows for condi-
tional formatting.

If your format speci-
fier contains no sec-
tion separators, the
formatting state-
ment applies to all
input.

If your format speci-
fier contains one
separator (creating
two sections), the
first section applies
to positive numbers
and zero, and the
second section
applies to negative
numbers.

If your format speci-
fier contains two
separators (creating
three sections), the
sections apply to
positive numbers,
negative numbers,
and zero.

PS > "{0:POS;NEG;ZERO}"
-f -14
NEG

Other Other
character

Inserts the provided
text literally into the
output without af-
fecting formatting.

PS > "{0:$## Please}" -
f 14
$14 Please

100 | Chapter 4: .NET String Formatting

CHAPTER 5

.NET DateTime Formatting

DateTime format strings convert a DateTime object to one of
several standard formats, as listed in Table 5-1.

Table 5-1. Standard DateTime format strings

Format
specifier

Name Description Example

d Short
date

The culture’s short
date format.

PS > "{0:d}" -f
[DateTime] "01/23/4567"
1/23/4567

D Long
date

The culture’s long
date format.

PS > "{0:D}" -f
[DateTime] "01/23/4567"
Friday, January 23, 4567

f Full
date/
short
time

Combines the long
date and short
time format pat-
terns.

PS > "{0:f}" -f
[DateTime] "01/23/4567"
Friday, January 23, 4567
12:00 AM

F Full
date/
long
time

Combines the long
date and long time
format patterns.

PS > "{0:F}" -f
[DateTime] "01/23/4567"
Friday, January 23, 4567
12:00:00 AM

g General
date/
short
time

Combines the
short date and
short time format
patterns.

PS > "{0:g}" -f
[DateTime] "01/23/4567"
1/23/4567 12:00 AM

101

Format
specifier

Name Description Example

G General
date/
long
time

Combines the
short date and
long time format
patterns.

PS > "{0:G}" -f
[DateTime] "01/23/4567"
1/23/4567 12:00:00 AM

M or m Month
day

The culture’s
MonthDay for-
mat.

PS > "{0:M}" -f
[DateTime] "01/23/4567"
January 23

o Round-
trip
date/
time

The date format-
ted with a pattern
that guarantees
the string (when
parsed) will result
in the original
DateTime again.

PS > "{0:o}" -f
[DateTime] "01/23/4567"
4567-01-23T00:00:00.00000
00

R or r RFC1123 The standard
RFC1123 format
pattern.

PS > "{0:R}" -f
[DateTime] "01/23/4567"
Fri, 23 Jan 4567 00:00:00
GMT

s Sortable Sortable format
pattern. Conforms
to ISO 8601 and
provides output
suitable for sort-
ing.

PS > "{0:s}" -f
[DateTime] "01/23/4567"
4567-01-23T00:00:00

t Short
time

The culture’s
ShortTime for-
mat.

PS > "{0:t}" -f
[DateTime] "01/23/4567"
12:00 AM

T Long
time

The culture’s
LongTime for-
mat.

PS > "{0:T}" -f
[DateTime] "01/23/4567"
12:00:00 AM

u Univer-
sal
sortable

The culture’s Uni
versalSorta
ble DateTime
format applied to
the UTC equiva-
lent of the input.

PS > "{0:u}" -f
[DateTime] "01/23/4567"
4567-01-23 00:00:00Z

102 | Chapter 5: .NET DateTime Formatting

Format
specifier

Name Description Example

U Univer-
sal

The culture’s
FullDateTime
format applied to
the UTC equiva-
lent of the input.

PS > "{0:U}" -f
[DateTime] "01/23/4567"
Friday, January 23, 4567
8:00:00 AM

Y or y Year
month

The culture’s
YearMonth for-
mat.

PS > "{0:Y}" -f
[DateTime] "01/23/4567"
January, 4567

Custom DateTime Format Strings
You can use the custom DateTime format strings listed in Ta-
ble 5-2 to format dates in ways not supported by the standard
format strings.

NOTE
Single-character format specifiers are by default inter-
preted as a standard DateTime formatting string unless
they are used with other formatting specifiers. Add the
% character before them to have them interpreted as a
custom format specifier.

Table 5-2. Custom DateTime format strings

Format
speci-
fier

Description Example

d Day of the month as
a number between 1
and 31. Represents
single-digit days
without a leading
zero.

PS > "{0:%d}" -f
 [DateTime] "01/02/4567"
2

Custom DateTime Format Strings | 103

Format
speci-
fier

Description Example

dd Day of the month as
a number between 1
and 31. Represents
single-digit days
with a leading zero.

PS > "{0:dd}" -f
 [DateTime] "01/02/4567"
02

ddd Abbreviated name
of the day of week.

PS > "{0:ddd}" -f
 [DateTime] "01/02/4567"
Fri

dddd Full name of the day
of the week.

PS > "{0:dddd}" -f
 [DateTime] "01/02/4567"
Friday

f Most significant
digit of the seconds
fraction
(milliseconds).

PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:%f}" -f $date
0

ff Two most significant
digits of the seconds
fraction
(milliseconds).

PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:ff}" -f $date
09

fff Three most signifi-
cant digits of the sec-
onds fraction (milli-
seconds).

PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:fff}" -f $date
093

ffff Four most signifi-
cant digits of the sec-
onds fraction
(milliseconds).

PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:ffff}" -f $date
0937

fffff Five most significant
digits of the seconds
fraction
(milliseconds).

PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:fffff}" -f $date
09375

fffff
f

Six most significant
digits of the seconds

PS > $date = Get-Date
PS > $date.Millisecond

104 | Chapter 5: .NET DateTime Formatting

Format
speci-
fier

Description Example

fraction
(milliseconds).

93
PS > "{0:ffffff}" -f $date
093750

fffff
ff

Seven most signifi-
cant digits of the sec-
onds fraction (milli-
seconds).

PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:fffffff}" -f $date
0937500

F

FF

FFF

(...)

FFFFF
FF

Most significant
digit of the seconds
fraction
(milliseconds).

When compared to
the lowercase series
of 'f' specifiers, dis-
plays nothing if the
number is zero.

PS > "{0:|F FF FFF FFFF|}" -f
 [DateTime] "01/02/4567"
| |

%g or gg Era (e.g., A.D.). PS > "{0:gg}" -f [DateTime]
 "01/02/4567"
A.D.

%h Hours, as a number
between 1 and 12.
Single digits do not
include a leading
zero.

PS > "{0:%h}" -f
 [DateTime] "01/02/4567 4:00pm"
4

hh Hours, as a number
between 01 and 12.
Single digits include
a leading zero. Note:
this is interpreted as
a standard DateTime
formatting string
unless used with
other formatting
specifiers.

PS > "{0:hh}" -f
 [DateTime] "01/02/4567 4:00pm"
04

Custom DateTime Format Strings | 105

Format
speci-
fier

Description Example

%H Hours, as a number
between 0 and 23.
Single digits do not
include a leading
zero.

PS > "{0:%H}" -f
 [DateTime] "01/02/4567 4:00pm"
16

HH Hours, as a number
between 00 and 23.
Single digits include
a leading zero.

PS > "{0:HH}" -f
 [DateTime] "01/02/4567 4:00am"
04

K DateTime.Kind
specifier that corre-
sponds to the kind
(i.e., Local, Utc, or
Unspecified) of input
date.

PS > "{0:%K}" -f

[DateTime]::Now.ToUniversalTime()
Z

m Minute, as a number
between 0 and 59.
Single digits do not
include a leading
zero.

PS > "{0:%m}" -f [DateTime]::Now
 7

mm Minute, as a number
between 00 and 59.
Single digits include
a leading zero.

PS > "{0:mm}" -f [DateTime]::Now
08

M Month, as a number
between 1 and 12.
Single digits do not
include a leading
zero.

PS > "{0:%M}" -f
 [DateTime] "01/02/4567"
1

MM Month, as a number
between 01 and 12.
Single digits include
a leading zero.

PS > "{0:MM}" -f
 [DateTime] "01/02/4567"
01

106 | Chapter 5: .NET DateTime Formatting

Format
speci-
fier

Description Example

MMM Abbreviated month
name.

PS > "{0:MMM}" -f
 [DateTime] "01/02/4567"
Jan

MMMM Full month name. PS > "{0:MMMM}" -f
 [DateTime] "01/02/4567"
January

s Seconds, as a num-
ber between 0 and
59. Single digits do
not include a leading
zero.

PS > $date = Get-Date
PS > "{0:%s}" -f $date
7

ss Seconds, as a num-
ber between 00 and
59. Single digits in-
clude a leading zero.

PS > $date = Get-Date
PS > "{0:ss}" -f $date
07

t First character of the
a.m./p.m. designa-
tor.

PS > $date = Get-Date
PS > "{0:%t}" -f $date
P

tt a.m./p.m.
designator.

PS > $date = Get-Date
PS > "{0:tt}" -f $date
PM

y Year, in (at most)
two digits.

PS > "{0:%y}" -f
 [DateTime] "01/02/4567"
67

yy Year, in (at most)
two digits.

PS > "{0:yy}" -f
 [DateTime] "01/02/4567"
67

yyy Year, in (at most)
four digits.

PS > "{0:yyy}" -f
 [DateTime] "01/02/4567"
4567

yyyy Year, in (at most)
four digits.

PS > "{0:yyyy}" -f
 [DateTime] "01/02/4567"
4567

yyyyy Year, in (at most) five
digits.

PS > "{0:yyyy}" -f
 [DateTime] "01/02/4567"
04567

Custom DateTime Format Strings | 107

Format
speci-
fier

Description Example

z Signed time zone
offset from GMT.
Does not include a
leading zero.

PS > "{0:%z}" -f [DateTime]::Now
-8

zz Signed time zone
offset from GMT.
Includes a leading
zero.

PS > "{0:zz}" -f [DateTime]::Now
-08

zzz Signed time zone
offset from GMT,
measured in hours
and minutes.

PS > "{0:zzz}" -f [DateTime]::Now
-08:00

: Time separator. PS > "{0:y/m/d h:m:s}" -f
 [DateTime] "01/02/4567 4:00pm"
67/0/2 4:0:0

/ Date separator. PS > "{0:y/m/d h:m:s}" -f
 [DateTime] "01/02/4567 4:00pm"
67/0/2 4:0:0

" text
"

' text
'

Inserts the provided
text literally into the
output without af-
fecting formatting.

PS > "{0:'Day: 'dddd}" -f
 [DateTime]::Now
Day: Monday

%c Syntax allowing for
single-character
custom formatting
specifiers. The %
sign is not added to
the output.

PS > "{0:%h}" -f
 [DateTime] "01/02/4567 4:00pm"
4

Other Inserts the provided
text literally into the
output without af-
fecting formatting.

PS > "{0:dddd!}" -f
[DateTime]::Now
Monday!

108 | Chapter 5: .NET DateTime Formatting

CHAPTER 6

Selected .NET Classes and
Their Uses

Tables 6-1 through 6-16 provide pointers to types in the .NET
Framework that usefully complement the functionality that
PowerShell provides. For detailed descriptions and documen-
tation, search MSDN for the official documentation.

Table 6-1. Windows PowerShells

Class Description

System.Management.Auto
mation.PSObject

Represents a PowerShell object to which you can add
notes, properties, and more.

Table 6-2. Utility

Class Description

System.DateTime Represents an instant in time, typically expressed as
a date and time of day.

System.Guid Represents a globally unique identifier (GUID).

System.Math Provides constants and static methods for trigono-
metric, logarithmic, and other common mathemat-
ical functions.

System.Random Represents a pseudorandom number generator, a
device that produces a sequence of numbers that

109

http://msdn.microsoft.com

Class Description
meet certain statistical requirements for
randomness.

System.Convert Converts a base data type to another base data type.

System.Environment Provides information about, and means to manip-
ulate, the current environment and platform.

System.Console Represents the standard input, output, and error
streams for console applications.

System.Text.RegularEx
pressions.Regex

Represents an immutable regular expression.

System.Diagnos
tics.Debug

Provides a set of methods and properties that help
debug your code.

System.Diagnos
tics.EventLog

Provides interaction with Windows event logs.

System.Diagnostics.Pro
cess

Provides access to local and remote processes and
enables you to start and stop local system processes.

System.Diagnos
tics.Stopwatch

Provides a set of methods and properties that you
can use to accurately measure elapsed time.

System.Media.Sound
Player

Controls playback of a sound from a .wav file.

Table 6-3. Collections and object utilities

Class Description

System.Array Provides methods for creating, manipulating,
searching, and sorting arrays, thereby serving as the
base class for all arrays in the Common Language
Runtime.

System.Enum Provides the base class for enumerations.

System.String Represents text as a series of Unicode characters.

System.Text.String
Builder

Represents a mutable string of characters.

System.Collections.Spe
cialized.OrderedDic
tionary

Represents a collection of key/value pairs that are
accessible by the key or index.

110 | Chapter 6: Selected .NET Classes and Their Uses

Class Description

System.Collec
tions.ArrayList

Implements the IList interface using an array whose
size is dynamically increased as required.

Table 6-4. The .NET Framework

Class Description

System.AppDomain Represents an application domain, which is an iso-
lated environment where applications execute.

System.Reflec
tion.Assembly

Defines an Assembly, which is a reusable, versiona-
ble, and self-describing building block of a Common
Language Runtime application.

System.Type Represents type declarations: class types, interface
types, array types, value types, enumeration types,
type parameters, generic type definitions, and open
or closed constructed generic types.

System.Thread
ing.Thread

Creates and controls a thread, sets its priority, and
gets its status.

System.Runtime.Interop
Services.Marshal

Provides a collection of methods for allocating un-
managed memory, copying unmanaged memory
blocks, and converting managed to unmanaged
types, as well as other miscellaneous methods used
when interacting with unmanaged code.

Microsoft.CSharp.
CSharpCodeProvider

Provides access to instances of the C# code generator
and code compiler.

Table 6-5. Registry

Class Description

Microsoft.Win32.Regis
try

Provides RegistryKey objects that represent the
root keys in the local and remote Windows registry
and static methods to access key/value pairs.

Microsoft.Win32.Regis
tryKey

Represents a key-level node in the Windows registry.

Selected .NET Classes and Their Uses | 111

Table 6-6. Input and Output

Class Description

System.IO.Stream Provides a generic view of a sequence of bytes.

System.IO.BinaryReader Reads primitive data types as binary values.

System.IO.BinaryWriter Writes primitive types in binary to a stream.

System.IO.Buffered
Stream

Adds a buffering layer to read and write operations
on another stream.

System.IO.Directory Exposes static methods for creating, moving, and
enumerating through directories and subdirecto-
ries.

System.IO.FileInfo Provides instance methods for the creation, copying,
deletion, moving, and opening of files, and aids in
the creation of FileStream objects.

System.IO.Direc
toryInfo

Exposes instance methods for creating, moving, and
enumerating through directories and subdirecto-
ries.

System.IO.File Provides static methods for the creation, copying,
deletion, moving, and opening of files, and aids in
the creation of FileStream objects.

System.IO.MemoryStream Creates a stream whose backing store is memory.

System.IO.Path Performs operations on String instances that con-
tain file or directory path information. These oper-
ations are performed in a cross-platform manner.

System.IO.TextReader Represents a reader that can read a sequential series
of characters.

System.IO.StreamReader Implements a TextReader that reads characters
from a byte stream in a particular encoding.

System.IO.TextWriter Represents a writer that can write a sequential series
of characters.

System.IO.StreamWriter Implements a TextWriter for writing characters
to a stream in a particular encoding.

System.IO.StringReader Implements a TextReader that reads from a
string.

112 | Chapter 6: Selected .NET Classes and Their Uses

Class Description

System.IO.StringWriter Implements a TextWriter for writing informa-
tion to a string.

System.IO.Compres
sion.DeflateStream

Provides methods and properties used to compress
and decompress streams using the Deflate algo-
rithm.

System.IO.Compres
sion.GZipStream

Provides methods and properties used to compress
and decompress streams using the GZip algorithm.

System.IO.FileSystem
Watcher

Listens to the filesystem change notifications and
raises events when a directory or file in a directory
changes.

Table 6-7. Security

Class Description

System.Security.Princi
pal.WindowsIdentity

Represents a Windows user.

System.Security.Princi
pal.WindowsPrincipal

Allows code to check the Windows group member-
ship of a Windows user.

System.Security.Princi
pal.WellKnownSidType

Defines a set of commonly used security identifiers
(SIDs).

System.Security.Princi
pal.WindowsBuiltInRole

Specifies common roles to be used with IsInRole.

System.Security.Secure
String

Represents text that should be kept confidential. The
text is encrypted for privacy when being used and
deleted from computer memory
when no longer needed.

System.Security.Cryp
tography.TripleDESCryp
toServiceProvider

Defines a wrapper object to access the cryptographic
service provider (CSP) version
of the TripleDES algorithm.

System.Security.Cryp
tography.PasswordDeri
veBytes

Derives a key from a password using an extension of
the PBKDF1 algorithm.

System.Security.Cryp
tography.SHA1

Computes the SHA1 hash for the input data.

Selected .NET Classes and Their Uses | 113

Class Description

System.Security.Access
Control.FileSystem
Security

Represents the access control and audit security for
a file or directory.

System.Security.Access
Control.Registry
Security

Represents the Windows access control security for
a registry key.

Table 6-8. User interface

Class Description

System.Win
dows.Forms.Form

Represents a window or dialog box that makes up
an application’s user interface.

System.Windows
.Forms.FlowLayoutPanel

Represents a panel that dynamically lays out its
contents.

Table 6-9. Image manipulation

Class Description

System.Drawing.Image A class that provides functionality for the Bitmap
and Metafile classes.

System.Drawing.Bitmap Encapsulates a GDI+ bitmap, which consists of the
pixel data for a graphics image and its attributes. A
bitmap is an object used to work with images defined
by pixel data.

Table 6-10. Networking

Class Description

System.Uri Provides an object representation of a uniform re-
source identifier (URI) and easy access to the parts
of the URI.

System.Net.NetworkCre
dential

Provides credentials for password-based authenti-
cation schemes such as basic, digest, Kerberos au-
thentication, and NTLM.

System.Net.Dns Provides simple domain name resolution function-
ality.

114 | Chapter 6: Selected .NET Classes and Their Uses

Class Description

System.Net.FtpWeb
Request

Implements a File Transfer Protocol (FTP) client.

System.Net.HttpWeb
Request

Provides an HTTP-specific implementation of the
WebRequest class.

System.Net.WebClient Provides common methods for sending data to and
receiving data from a resource identified by a URI.

System.Net.Sock
ets.TcpClient

Provides client connections for TCP network services.

System.Net.Mail.Mail
Address

Represents the address of an electronic mail sender
or recipient.

System.Net.Mail.Mail
Message

Represents an email message that can be sent using
the SmtpClient class.

System.Net.Mail
.SmtpClient

Allows applications to send email by using the Sim-
ple Mail Transfer Protocol (SMTP).

System.IO.Ports.Serial
Port

Represents a serial port resource.

System.Web.HttpUtility Provides methods for encoding and decoding URLs
when processing web requests.

Table 6-11. XML

Class Description

System.Xml.XmlText
Writer

Represents a writer that provides a fast, noncached,
forward-only way of generating streams or files
containing XML data that conforms to the W3C Ex-
tensible Markup Language (XML) 1.0 and the name-
spaces in XML recommendations.

System.Xml.XmlDocument Represents an XML document.

Table 6-12. Windows Management Instrumentation (WMI)

Class Description

System.Management.Man
agementObject

Represents a WMI instance.

Selected .NET Classes and Their Uses | 115

Class Description

System.Management.Man
agementClass

Represents a management class. A management
class is a WMI class such as Win32_Logical
Disk, which can represent a disk drive, or
Win32_Process, which represents a process such
as an instance of Notepad.exe. The members of this
class enable you to access WMI data using a specific
WMI class path. For more information, see “Win32
Classes” in the Windows Management Instrumen-
tation documentation in the MSDN Library.

System.Management.Man
agementObjectSearcher

Retrieves a collection of WMI management objects
based on a specified query. This class is one of the
more commonly used entry points to retrieving
management information. For example, it can be
used to enumerate all disk drives, network adapters,
processes, and many more management objects on
a system or to query for all network connections that
are up, services that are paused, and so on. When
instantiated, an instance of this class takes as input
a WMI query represented in an ObjectQuery or
its derivatives, and optionally a Management
Scope representing the WMI namespace to execute
the query in. It can also take additional advanced
options in an EnumerationOptions. When the
Get method on this object is invoked, the Manage
mentObjectSearcher executes the given query
in the specified scope and returns a collection of
management objects that match the query in a Man
agementObjectCollection.

System.Management.Man
agementDateTimeCon
verter

Provides methods to convert DMTF datetime and
time intervals to CLR-compliant DateTime and
TimeSpan formats, and vice versa.

System.Management.Man
agementEventWatcher

Subscribes to temporary event notifications based
on a specified event query.

116 | Chapter 6: Selected .NET Classes and Their Uses

http://msdn.microsoft.com/library

Table 6-13. Active Directory

Class Description

System.DirectoryServi
ces.DirectorySearcher

Performs queries against Active Directory.

System.DirectoryServi
ces.DirectoryEntry

The DirectoryEntry class encapsulates a node
or object in the Active Directory hierarchy.

Table 6-14. Database

Class Description

System.Data.DataSet Represents an in-memory cache of data.

System.Data.DataTable Represents one table of in-memory data.

System.Data.
SqlClient.SqlCommand

Represents a Transact-SQL statement or stored
procedure to execute against a SQL Server database.

System.Data.
SqlClient.SqlConnec
tion

Represents an open connection to a SQL Server da-
tabase.

System.Data.
SqlClient.SqlDataAdap
ter

Represents a set of data commands and a database
connection that are used to fill the DataSet and
update a SQL Server database.

System.Data.Odbc.Odbc
Command

Represents a SQL statement or stored procedure to
execute against a data source.

System.Data.Odbc.Odbc
Connection

Represents an open connection to a data source.

System.Data.Odbc.Odbc
DataAdapter

Represents a set of data commands and a connection
to a data source that are used to fill the DataSet
and update the data source.

Table 6-15. Message queuing

Class Description

System.Messaging.
MessageQueue

Provides access to a queue on a Message Queuing
server.

Selected .NET Classes and Their Uses | 117

Table 6-16. Transactions

Class Description

System.Transac
tions.Transaction

Represents a transaction.

118 | Chapter 6: Selected .NET Classes and Their Uses

CHAPTER 7

WMI Reference

The Windows Management Instrumentation (WMI) facilities
in Windows offer thousands of classes that provide informa-
tion of interest to administrators. Table 7-1 lists the categories
and subcategories covered by WMI and can be used to get a
general idea of the scope of WMI classes. Table 7-2 provides a
selected subset of the most useful WMI classes. For more in-
formation about a category, search the official WMI docu-
mentation at http://msdn.microsoft.com.

Table 7-1. WMI class categories and subcategories

Category Subcategory

Computer system hardware Cooling device, input device, mass storage, moth-
erboard, controller and port, networking device,
power, printing, telephony, video, and monitor

Operating system COM, desktop, drivers, filesystem, job objects, mem-
ory and page files, multimedia audio/visual, net-
working, operating system events, operating system
settings, processes, registry, scheduler jobs, security,
services, shares, Start menu, storage, users, Win-
dows NT event log, Windows product activation

WMI Service Management WMI configuration, WMI management

General Installed applications, performance counter,
security descriptor

119

http://msdn.microsoft.com

Table 7-2. Selected WMI classes

Class Description

Win32_BaseBoard Represents a baseboard, which is also known as a
motherboard or system board.

Win32_BIOS Represents the attributes of the computer system’s
basic input/output services (BIOS) that are installed on
a computer.

Win32_BootConfigura
tion

Represents the boot configuration of a Windows sys-
tem.

Win32_CDROMDrive Represents a CD-ROM drive on a Windows computer
system. Be aware that the name of the drive does not
correspond to the logical drive letter assigned to the
device.

Win32_ComputerSystem Represents a computer system in a Win-
dows environment.

Win32_Processor Represents a device that can interpret a sequence of
instructions on a computer running on a Windows op-
erating system. On a multiprocessor computer, one
instance of the Win32_Processor class exists for
each processor.

Win32_ComputerSystem
Product

Represents a product. This includes software and hard-
ware used on this computer system.

CIM_DataFile Represents a named collection of data or executable
code. Currently, the provider returns files on fixed and
mapped logical disks. In the future, only instances of
files on local fixed disks will be returned.

Win32_DCOMApplication Represents the properties of a DCOM application.

Win32_Desktop Represents the common characteristics of a user’s
desktop. The properties of this class can be modified
by the user to customize the desktop.

Win32_DesktopMonitor Represents the type of monitor or display device at-
tached to the computer system.

Win32_DeviceMemoryAd
dress

Represents a device memory address on a Windows
system.

120 | Chapter 7: WMI Reference

Class Description

Win32_DiskDrive Represents a physical disk drive as seen by a computer
running the Windows operating system. Any interface
to a Windows physical disk drive is a descendant (or
member) of this class. The features of the disk drive
seen through this object correspond to the logical and
management characteristics of the drive. In some ca-
ses, this may not reflect the actual physical character-
istics of the device. Any object based on another logical
device would not be a member of this class.

Win32_DiskQuota Tracks disk space usage for NTFS filesystem volumes.
A system administrator can configure Windows to
prevent further disk space use and log an event when
a user exceeds a specified disk space limit. An admin-
istrator can also log an event when a user exceeds a
specified disk space warning level. This class is new in
Windows XP.

Win32_DMAChannel Represents a direct memory access (DMA) channel on
a Windows computer system. DMA is a method of
moving data from a device to memory (or vice versa)
without the help of the microprocessor. The system
board uses a DMA controller to handle a fixed number
of channels, each of which can be used by one (and
only one) device at a time.

Win32_Environment Represents an environment or system environment
setting on a Windows computer system. Querying this
class returns environment variables found in HKLM
\System\CurrentControlSet\Control\Sessionmanager\
Environment as well as HKEY_USERS\<user sid>\En-
vironment.

Win32_Directory Represents a directory entry on a Windows computer
system. A directory is a type of file that logically groups
data files and provides path information for the grou-
ped files. Win32_Directory does not include di-
rectories of network drives.

Win32_Group Represents data about a group account. A group ac-
count allows access privileges to be changed for a list
of users (for example, Administrators).

WMI Reference | 121

Class Description

Win32_IDEController Manages the capabilities of an integrated device elec-
tronics (IDE) controller device.

Win32_IRQResource Represents an interrupt request line (IRQ) number on
a Windows computer system. An interrupt request is
a signal sent to the CPU by a device or program for
time-critical events. IRQ can be hardware- or software-
based.

Win32_ScheduledJob Represents a job created with the AT command. The
Win32_ScheduledJob class does not represent a
job created with the Scheduled Task Wizard from the
Control Panel. You cannot change a task created by
WMI in the Scheduled Tasks UI.

Windows 2000 and Windows NT 4.0: You can use the
Scheduled Tasks UI to modify the task you originally
created with WMI. However, although the task is suc-
cessfully modified, you can no longer access the task
using WMI.

Each job scheduled against the schedule service is
stored persistently (the scheduler can start a job after
a reboot) and is executed at the specified time and day
of the week or month. If the computer is not active or
if the scheduled service is not running at the specified
job time, the schedule service runs the specified job on
the next day at the specified time.

Jobs are scheduled according to Universal Coordinated
Time (UTC) with bias offset from Greenwich Mean Time
(GMT), which means that a job can be specified using
any time zone. The Win32_ScheduledJob class
returns the local time with UTC offset when enumer-
ating an object, and converts to local time when cre-
ating new jobs. For example, a job specified to run on
a computer in Boston at 10:30 p.m. Monday PST will
be scheduled to run locally at 1:30 a.m. Tuesday EST.
Note that a client must take into account whether
daylight saving time is in operation on the local com-
puter, and if it is, then subtract a bias of 60 minutes
from the UTC offset.

122 | Chapter 7: WMI Reference

Class Description

Win32_LoadOrderGroup Represents a group of system services that define ex-
ecution dependencies. The services must be initiated
in the order specified by the Load Order Group, as the
services are dependent on one another. These depen-
dent services require the presence of the antecedent
services to function correctly. The data in this class is
derived by the provider from the registry key System
\CurrentControlSet\Control\GroupOrderList.

Win32_LogicalDisk Represents a data source that resolves to an actual
local storage device on a Windows system.

Win32_LogonSession Describes the logon session or sessions associated with
a user logged on to Windows NT or Windows 2000.

Win32_CacheMemory Represents internal and external cache memory on a
computer system.

Win32_LogicalMemory
Configuration

Represents the layout and availability of memory on
a Windows system. Beginning with Windows Vista,
this class is no longer available in the operating system.

Windows XP and Windows Server 2003: This class is
no longer supported. Use the Win32_Operating
System class instead.

Windows 2000: This class is available and supported.

Win32_PhysicalMemory
Array

Represents details about the computer system physi-
cal memory. This includes the number of memory de-
vices, memory capacity available, and memory type
(for example, system or video memory).

WIN32_NetworkClient Represents a network client on a Windows system. Any
computer system on the network with a client rela-
tionship to the system is a descendant (or member) of
this class (for example, a computer running Windows
2000 Workstation or Windows 98 that is part of a Win-
dows 2000 domain).

Win32_NetworkLoginPro
file

Represents the network login information of a specific
user on a Windows system. This includes but is not
limited to password status, access privileges,
disk quotas, and login directory paths.

WMI Reference | 123

Class Description

Win32_NetworkProtocol Represents a protocol and its network characteristics
on a Win32 computer system.

Win32_NetworkConnec
tion

Represents an active network connection in a
Windows environment.

Win32_NetworkAdapter Represents a network adapter of a computer
running on a Windows operating system.

Win32_NetworkAdapter
Configuration

Represents the attributes and behaviors of a network
adapter. This class includes extra properties and meth-
ods that support the management of the TCP/IP and
Internetworking Packet Exchange (IPX) protocols that
are independent from the network adapter.

Win32_NTDomain Represents a Windows NT domain.

Win32_NTLogEvent Used to translate instances from the Windows NT event
log. An application must have SeSecurityPrivi
lege to receive events from the security event log;
otherwise, “Access Denied” is returned to the appli-
cation.

Win32_NTEventlogFile Represents a logical file or directory of Windows NT
events. The file is also known as the event log.

Win32_OnBoardDevice Represents common adapter devices built into the
motherboard (system board).

Win32_OperatingSystem Represents an operating system installed on a com-
puter running on a Windows operating system. Any
operating system that can be installed on a Windows
system is a descendant or member of this class.
Win32_OperatingSystem is a singleton class. To
get the single instance, use @ for the key.

Windows Server 2003, Windows XP, Windows 2000,
and Windows NT 4.0: If a computer has multiple op-
erating systems installed, this class returns only an
instance for the currently active operating system.

Win32_PageFileUsage Represents the file used for handling virtual memory
file swapping on a Win32 system. Information con-
tained within objects instantiated from this class
specifies the runtime state of the page file.

124 | Chapter 7: WMI Reference

Class Description

Win32_PageFileSetting Represents the settings of a page file. Information
contained within objects instantiated from this class
specifies the page file parameters used when the file
is created at system startup. The properties in this class
can be modified and deferred until startup. These set-
tings are different from the runtime state of a page file
expressed through the associated class Win32_Page
FileUsage.

Win32_DiskPartition Represents the capabilities and management capacity
of a partitioned area of a physical disk on a Windows
system (for example, Disk #0, Partition #1).

Win32_PortResource Represents an I/O port on a Windows computer
system.

Win32_PortConnector Represents physical connection ports, such as DB-25
pin male, Centronics, or PS/2.

Win32_Printer Represents a device connected to a computer running
on a Microsoft Windows operating system that can
produce a printed image or text on paper or another
medium.

Win32_PrinterConfigu
ration

Represents the configuration for a printer device. This
includes capabilities such as resolution, color, fonts,
and orientation.

Win32_PrintJob Represents a print job generated by a Windows ap-
plication. Any unit of work generated by the Print
command of an application that is running on a com-
puter running on a Windows operating system is a
descendant or member of this class.

Win32_Process Represents a process on an operating system.

Win32_Product Represents products as they are installed by Windows
Installer. A product generally correlates to one instal-
lation package. For information about support or re-
quirements for installation of a specific operating sys-
tem, visit MSDN and search for “Operating System
Availability of WMI Components.”

WMI Reference | 125

http://msdn.microsoft.com

Class Description

Win32_QuickFixEngin
eering

Represents system-wide Quick Fix Engineering (QFE)
or updates that have been applied to the current op-
erating system.

Win32_QuotaSetting Contains setting information for disk quotas on a vol-
ume.

Win32_OSRecoveryConfi
guration

Represents the types of information that will be gath-
ered from memory when the operating system fails.
This includes boot failures and system crashes.

Win32_Registry Represents the system registry on a Windows com-
puter system.

Win32_SCSIController Represents a SCSI controller on a Windows system.

Win32_PerfRaw
Data_PerfNet_Server

Provides raw data from performance counters that
monitor communications using the WINS Server
service.

Win32_Service Represents a service on a computer running on a Mi-
crosoft Windows operating system. A service applica-
tion conforms to the interface rules of the Service Con-
trol Manager (SCM), and can be started by a user au-
tomatically at system start through the Services Con-
trol Panel utility or by an application that uses the
service functions included in the Windows API. Services
can start when there are no users logged on to the
computer.

Win32_Share Represents a shared resource on a Windows system.
This may be a disk drive, printer, interprocess com-
munication, or other shareable device.

Win32_SoftwareElement Represents a software element, part of a software fea-
ture (a distinct subset of a product, which may contain
one or more elements). Each software element is de-
fined in a Win32_SoftwareElement instance,
and the association between a feature and its
Win32_SoftwareFeature instance is defined in
the Win32_SoftwareFeatureSoftwareEle
ments association class. For information about sup-
port or requirements for installation on a specific op-

126 | Chapter 7: WMI Reference

Class Description
erating system, visit MSDN and search for “Operating
System Availability of WMI Components.”

Win32_SoftwareFeature Represents a distinct subset of a product that consists
of one or more software elements. Each software el-
ement is defined in a Win32_SoftwareElement
instance, and the association between a feature and
its Win32_SoftwareFeature instance is defined
in the Win32_SoftwareFeatureSoftwareEle
ments association class. For information about sup-
port or requirements for installation on a specific op-
erating system, visit MSDN and search for “Operating
System Availability of WMI Components.”

WIN32_SoundDevice Represents the properties of a sound device on a Win-
dows computer system.

Win32_StartupCommand Represents a command that runs automatically when
a user logs on to the computer system.

Win32_SystemAccount Represents a system account. The system account is
used by the operating system and services that run
under Windows NT. There are many services and pro-
cesses within Windows NT that need the capability to
log on internally—for example, during a Windows NT
installation. The system account was designed for that
purpose.

Win32_SystemDriver Represents the system driver for a base service.

Win32_SystemEnclosure Represents the properties that are associated with a
physical system enclosure.

Win32_SystemSlot Represents physical connection points, including
ports, motherboard slots and peripherals, and propri-
etary connection points.

Win32_TapeDrive Represents a tape drive on a Windows computer. Tape
drives are primarily distinguished by the fact that they
can be accessed only sequentially.

Win32_TemperatureP
robe

Represents the properties of a temperature sensor
(e.g., electronic thermometer).

WMI Reference | 127

http://msdn.microsoft.com
http://msdn.microsoft.com

Class Description

Win32_TimeZone Represents the time zone information for a Windows
system, which includes changes required for the day-
light saving time transition.

Win32_Uninterruptible
PowerSupply

Represents the capabilities and management capacity
of an uninterruptible power supply (UPS). Beginning
with Windows Vista, this class is obsolete and not
available, because the UPS service is no longer avail-
able. This service worked with serially attached UPS
devices, not USB devices.

Windows Server 2003 and Windows XP: This class is
available, but not usable, because the UPS service fails.
Windows Server 2003, Windows XP, Windows 2000,
and Windows NT 4.0: This class is available and im-
plemented.

Win32_UserAccount Contains information about a user account on a com-
puter running on a Windows operating system.

Because both the Name and Domain are key proper-
ties, enumerating Win32_UserAccount on a large
network can affect performance negatively. Calling
GetObject or querying for a specific instance has
less impact.

Win32_VoltageProbe Represents the properties of a voltage sensor (elec-
tronic voltmeter).

Win32_VolumeQuota
Setting

Relates disk quota settings with a specific disk volume.
Windows 2000/NT: This class is not available.

Win32_WMISetting Contains the operational parameters for the WMI ser-
vice. This class can have only one instance, which al-
ways exists for each Windows system and cannot be
deleted. Additional instances cannot be created.

128 | Chapter 7: WMI Reference

CHAPTER 8

Selected COM Objects and
Their Uses

As an extensibility and administration interface, many appli-
cations expose useful functionality through COM objects. Al-
though PowerShell handles many of these tasks directly, many
COM objects still provide significant value.

Table 8-1 lists a selection of the COM objects most useful to
system administrators.

Table 8-1. COM identifiers and descriptions

Identifier Description

Access.Application Allows for interaction and automation of Microsoft
Access.

Agent.Control Allows for the control of Microsoft Agent 3D animated
characters.

AutoItX3.Control (nondefault) Provides access to Windows Automation
via the AutoIt administration tool.

CEnroll.CEnroll Provides access to certificate enrollment services.

Certificate
Authority.Request

Provides access to a request to a certificate authority.

COMAdmin.COMAdminCa
talog

Provides access to and management of the
Windows COM+ catalog.

Excel.Application Allows for interaction and automation of Microsoft Excel.

129

Identifier Description

Excel.Sheet Allows for interaction with Microsoft Excel worksheets.

HNetCfg.FwMgr Provides access to the management functionality of the
Windows Firewall.

HNetCfg.HNetShare Provides access to the management functionality of
Windows Connection Sharing.

HTMLFile Allows for interaction and authoring of a new Internet
Explorer document.

InfoPath.Applica
tion

Allows for interaction and automation of Microsoft
InfoPath.

InternetExplorer.
Application

Allows for interaction and automation of Microsoft
Internet Explorer.

IXSSO.Query Allows for interaction with Microsoft Index Server.

IXSSO.Util Provides access to utilities used along with the
IXSSO.Query object.

LegitCheckCon
trol.LegitCheck

Provide access to information about Windows Genuine
Advantage status on the current computer.

MakeCab.MakeCab Provides functionality to create and manage cabinet
(.cab) files.

MAPI.Session Provides access to a Messaging Application Program-
ming Interface (MAPI) session, such as folders, messages,
and the address book.

Messenger.Messenger
App

Allows for interaction and automation of Messenger.

Microsoft.FeedsMan
ager

Allows for interaction with the Microsoft RSS feed plat-
form.

Microsoft.ISAdm Provides management of Microsoft Index Server.

Microsoft.Update.
AutoUpdate

Provides management of the auto update schedule for
Microsoft Update.

Microsoft.Update
.Installer

Allows for installation of updates from Microsoft Update.

Microsoft.Update
.Searcher

Provides search functionality for updates from Microsoft
Update.

130 | Chapter 8: Selected COM Objects and Their Uses

Identifier Description

Micro
soft.Update.Session

Provides access to local information about Microsoft Up-
date history.

Micro
soft.Update.System
Info

Provides access to information related to Microsoft Up-
date for the current system.

MMC20.Application Allows for interaction and automation of Microsoft Man-
agement Console (MMC).

MSScriptControl.
ScriptControl

Allows for the evaluation and control of WSH scripts.

Msxml2.XSLTemplate Allows for processing of XSL transforms.

Outlook.Application Allows for interaction and automation of your email,
calendar, contacts, tasks, and more through Microsoft
Outlook.

OutlookExpress.Mes
sageList

Allows for interaction and automation of your email
through Microsoft Outlook Express.

PowerPoint.Applica
tion

Allows for interaction and automation of Microsoft
PowerPoint.

Publisher.Applica
tion

Allows for interaction and automation of Microsoft Pub-
lisher.

RDS.DataSpace Provides access to proxies of Remote DataSpace business
objects.

SAPI.SpVoice Provides access to the Microsoft Speech API.

Scripting.FileSyste
mObject

Provides access to the computer’s filesystem. Most func-
tionality is available more directly through PowerShell
or through PowerShell’s support for the .NET
Framework.

Scripting.Signer Provides management of digital signatures on WSH files.

Scriptlet.TypeLib Allows the dynamic creation of scripting type library
(.tlb) files.

ScriptPW.Password Allows for the masked input of plain-text passwords.
When possible, you should avoid this, preferring the
Read-Host cmdlet with the -AsSecureString
parameter.

Selected COM Objects and Their Uses | 131

Identifier Description

SharePoint.OpenDocu
ments

Allows for interaction with Microsoft SharePoint Serv-
ices.

Shell.Application Provides access to aspects of the Windows Explorer Shell
application, such as managing windows, files and fold-
ers, and the current session.

Shell.LocalMachine Provides access to information about the current ma-
chine related to the Windows shell.

Shell.User Provides access to aspects of the current user’s
Windows session and profile.

SQLDMO.SQLServer Provides access to the management functionality of Mi-
crosoft SQL Server.

Vim.Application (nondefault) Allows for interaction and automation of
the VIM editor.

WIA.CommonDialog Provides access to image capture through the
Windows Image Acquisition facilities.

WMPlayer.OCX Allows for interaction and automation
of Windows Media Player.

Word.Application Allows for interaction and automation of Microsoft
Word.

Word.Document Allows for interaction with Microsoft Word documents.

WScript.Network Provides access to aspects of a networked Windows en-
vironment, such as printers and network drives, as well
as computer and domain information.

WScript.Shell Provides access to aspects of the Windows Shell, such as
applications, shortcuts, environment variables, the reg-
istry, and the operating environment.

WSHController Allows the execution of WSH scripts on remote
computers.

132 | Chapter 8: Selected COM Objects and Their Uses

CHAPTER 9

Selected Events and Their Uses

PowerShell’s eventing commands give you access to events
from the .NET Framework, as well as events surfaced by Win-
dows Management Instrumentation (WMI). Table 9-1 lists a
selection of .NET events. Table 9-2 lists a selection of WMI
events.

Table 9-1. Selected .NET events

Type Event Description

System.AppDomain AssemblyLoad Occurs when an assembly is
loaded.

System.AppDomain TypeResolve Occurs when the resolution
of a type fails.

System.AppDomain ResourceResolve Occurs when the resolution
of a resource fails because
the resource is not a valid
linked or embedded re-
source in the assembly.

System.AppDomain AssemblyResolve Occurs when the resolution
of an assembly fails.

System.AppDomain ReflectionOn
lyAssemblyRe
solve

Occurs when the resolution
of an assembly fails in the
reflection-only context.

System.AppDomain UnhandledExcep
tion

Occurs when an exception
is not caught.

133

Type Event Description

System.Console CancelKeyPress Occurs when the Control
modifier key (CTRL) and C
console key (C) are pressed
simultaneously (CTRL-C).

Microsoft.Win32.Sys
temEvents

DisplaySetting
sChanging

Occurs when the display
settings are changing.

Microsoft.Win32.Sys
temEvents

DisplaySetting
sChanged

Occurs when the user
changes the display set-
tings.

Microsoft.Win32.Sys
temEvents

InstalledFont
sChanged

Occurs when the user adds
fonts to or removes fonts
from the system.

Microsoft.Win32.Sys
temEvents

LowMemory Occurs when the system is
running out of available
RAM.

Microsoft.Win32.Sys
temEvents

PaletteChanged Occurs when the user
switches to an application
that uses a different pa-
lette.

Microsoft.Win32.Sys
temEvents

PowerMode
Changed

Occurs when the user sus-
pends or resumes the sys-
tem.

Microsoft.Win32.Sys
temEvents

SessionEnded Occurs when the user is log-
ging off or shutting down
the system.

Microsoft.Win32.Sys
temEvents

SessionEnding Occurs when the user is try-
ing to log off or shut down
the system.

Microsoft.Win32.Sys
temEvents

SessionSwitch Occurs when the currently
logged-in user has
changed.

Microsoft.Win32.Sys
temEvents

TimeChanged Occurs when the user
changes the time on the
system clock.

134 | Chapter 9: Selected Events and Their Uses

Type Event Description

Microsoft.Win32.Sys
temEvents

UserPreference
Changed

Occurs when a user prefer-
ence has changed.

Microsoft.Win32.Sys
temEvents

UserPreference
Changing

Occurs when a user prefer-
ence is changing.

System.Net.WebClient OpenReadComple
ted

Occurs when an asynchro-
nous operation to open a
stream containing a re-
source completes.

System.Net.WebClient OpenWriteComple
ted

Occurs when an asynchro-
nous operation to open a
stream to write data to a
resource completes.

System.Net.WebClient DownloadString
Completed

Occurs when an asynchro-
nous resource-download
operation completes.

System.Net.WebClient DownloadDataCom
pleted

Occurs when an asynchro-
nous data download oper-
ation completes.

System.Net.WebClient DownloadFileCom
pleted

Occurs when an asynchro-
nous file download opera-
tion completes.

System.Net.WebClient UploadStringCom
pleted

Occurs when an asynchro-
nous string-upload opera-
tion completes.

System.Net.WebClient UploadDataCom
pleted

Occurs when an asynchro-
nous data-upload opera-
tion completes.

System.Net.WebClient UploadFileCom
pleted

Occurs when an asynchro-
nous file-upload operation
completes.

System.Net.WebClient UploadValuesCom
pleted

Occurs when an asynchro-
nous upload of a name/
value collection completes.

System.Net.WebClient DownloadProgres
sChanged

Occurs when an asynchro-
nous download operation

Selected Events and Their Uses | 135

Type Event Description
successfully transfers some
or all of the data.

System.Net.WebClient UploadProgres
sChanged

Occurs when an asynchro-
nous upload operation suc-
cessfully transfers some or
all of the data.

System.Net.Sock
ets.SocketAsyncEven
tArgs

Completed The event used to complete
an asynchronous opera-
tion.

System.Net.NetworkIn
formation.Network
Change

NetworkAvailabi
lityChanged

Occurs when the availabil-
ity of the network changes.

System.Net.NetworkIn
formation.Network
Change

NetworkAddres
sChanged

Occurs when the IP address
of a network interface
changes.

System.IO.FileSystem
Watcher

Changed Occurs when a file or direc-
tory in the specified path is
changed.

System.IO.FileSystem
Watcher

Created Occurs when a file or direc-
tory in the specified path is
created.

System.IO.FileSystem
Watcher

Deleted Occurs when a file or direc-
tory in the specified path is
deleted.

System.IO.FileSystem
Watcher

Renamed Occurs when a file or direc-
tory in the specified path is
renamed.

System.Timers.Timer Elapsed Occurs when the interval
elapses.

System.Diagnos
tics.EventLog

EntryWritten Occurs when an entry is
written to an event log on
the local computer.

System.Diagnos
tics.Process

OutputDataRe
ceived

Occurs when an application
writes to its redirected
StandardOutput stream.

136 | Chapter 9: Selected Events and Their Uses

Type Event Description

System.Diagnos
tics.Process

ErrorDataRe
ceived

Occurs when an application
writes to its redirected
StandardError stream.

System.Diagnos
tics.Process

Exited Occurs when a process exits.

System.IO.Ports.Seri
alPort

ErrorReceived Represents the method
that handles the error event
of a SerialPort object.

System.IO.Ports.Seri
alPort

PinChanged Represents the method
that will handle the serial
pin changed event of a
SerialPort object.

System.IO.Ports.Seri
alPort

DataReceived Represents the method
that will handle the data
received event of a Seri
alPort object.

System.Manage
ment.Automation.Job

StateChanged Event fired when the status
of the job changes, such as
when the job has comple-
ted in all runspaces or failed
in any one runspace. This
event is introduced in Win-
dows PowerShell 2.0.

System.Manage
ment.Automation.Debug
ger

DebuggerStop Event raised when Win-
dows PowerShell stops
execution of the script and
enters the debugger as the
result of encountering a
breakpoint or executing a
step command. This event
is introduced in Windows
PowerShell 2.0.

System.Manage
ment.Automation.Debug
ger

BreakpointUpda
ted

Event raised when the
breakpoint is updated, such
as when it is enabled or dis-
abled. This event is intro-

Selected Events and Their Uses | 137

Type Event Description
duced in Windows Power-
Shell 2.0.

System.Manage
ment.Automation.Run
spaces.Runspace

StateChanged Event that is raised when
the state of the runspace
changes.

System.Manage
ment.Automation.Run
spaces.Runspace

Availability
Changed

Event that is raised when
the availability of the run-
space changes, such as
when the runspace be-
comes available and when
it is busy. This event is in-
troduced in Windows Pow-
erShell 2.0.

System.Manage
ment.Automation.Run
spaces.Pipeline

StateChanged Event raised when the state
of the pipeline changes.

System.Manage
ment.Automation.Power
Shell

InvocationState
Changed

Event raised when the state
of the pipeline of the Pow-
erShell object changes. This
event is introduced in Win-
dows
PowerShell 2.0.

System.Manage
ment.Automation.PSDa
taCollection[T]

DataAdded Event that is fired after data
is added to the collection.
This event is introduced in
Windows PowerShell 2.0.

System.Manage
ment.Automation.PSDa
taCollection[T]

Completed Event that is fired when the
Complete method is
called to indicate that no
more data is to be added to
the collection. This event is
introduced in Windows
PowerShell 2.0.

System.Manage
ment.Automation.Run
spaces.RunspacePool

StateChanged Event raised when the state
of the runspace pool
changes. This event is in-

138 | Chapter 9: Selected Events and Their Uses

Type Event Description
troduced in Windows Pow-
erShell 2.0.

System.Manage
ment.Automation.Run
spaces.PipelineR
eader[T]

DataReady Event fired when data is
added to the buffer.

System.Diagnos
tics.Event
ing.Reader.EventLog
Watcher

EventRecordWrit
ten

Allows setting a delegate
(event handler method)
that gets called every time
an event is published that
matches the criteria speci-
fied in the event query for
this object.

System.Data.Com
mon.DbConnection

StateChange Occurs when the state of the
event changes.

Sys
tem.Data.SqlClient.Sq
lBulkCopy

SqlRowsCopied Occurs every time that the
number of rows specified by
the NotifyAfter prop-
erty have been processed.

Sys
tem.Data.SqlClient.Sq
lCommand

StatementComple
ted

Occurs when the execution
of a Transact-SQL state-
ment completes.

Sys
tem.Data.SqlClient.Sq
lConnection

InfoMessage Occurs when SQL Server re-
turns a warning or informa-
tional message.

Sys
tem.Data.SqlClient.Sq
lConnection

StateChange Occurs when the state of the
event changes.

Sys
tem.Data.SqlClient.Sq
lDataAdapter

RowUpdated Occurs during Update af-
ter a command is executed
against the data source. The
attempt to update is made,
so the event fires.

Sys
tem.Data.SqlClient.Sq
lDataAdapter

RowUpdating Occurs during Update be-
fore a command is executed
against the data source. The

Selected Events and Their Uses | 139

Type Event Description
attempt to update is made,
so the event fires.

Sys
tem.Data.SqlClient.Sq
lDataAdapter

FillError Returned when an error oc-
curs during a fill operation.

Sys
tem.Data.SqlClient.Sq
lDependency

OnChange Occurs when a notification
is received for any of the
commands associated with
this SqlDependency
object.

Table 9-2. Selected WMI Events

Event Description

__InstanceCreationEvent This event class generically represents the
creation of instances in WMI providers, such
as Processes, Services, Files, and more.

A registration for this generic event looks like:

$query = "SELECT * FROM
__InstanceCreationEvent " +
 "WITHIN 5 " +
 "WHERE
targetinstance isa
'Win32_UserAccount'
Register-CimIndicationEvent
-Query $query

__InstanceDeletionEvent This event class generically represents the re-
moval of instances in WMI providers, such as
Processes, Services, Files, and more.

A registration for this generic event looks like:

$query = "SELECT * FROM
__InstanceDeletionEvent " +
 "WITHIN 5 " +
 "WHERE
targetinstance isa
'Win32_UserAccount'
Register-CimIndicationEvent
-Query $query

140 | Chapter 9: Selected Events and Their Uses

Event Description

__InstanceModificationE
vent

This event class generically represents the
modification of instances in WMI providers,
such as Processes, Services, Files, and more.

A registration for this generic event looks like:

$query = "SELECT * FROM
__InstanceModificationEvent
" +
 "WITHIN 5 " +
 "WHERE
targetinstance isa
'Win32_UserAccount'
Register-CimIndicationEvent
-Query $query

Msft_WmiProvider_Operatio
nEvent

The Msft_WmiProvider_OperationE
vent event class is the root definition of all
WMI provider events. A provider operation is
defined as some execution on behalf of a client
via WMI that results in one or more calls to a
provider executable. The properties of this
class define the identity of the provider asso-
ciated with the operation being executed and
is uniquely associated with instances of the
class Msft_Providers. Internally, WMI
can contain any number of objects that refer
to a particular instance of __Win32Pro
vider since it differentiates each object
based on whether the provider supports per-
user or per-locale instantiation and also de-
pending on where the provider is being
hosted.
Currently TransactionIdentifier is
always an empty string.

Win32_ComputerSystemEvent This event class represents events related to
a computer system.

Win32_ComputerShutdownE
vent

This event class represents events when a
computer has begun the process of shutting
down.

Selected Events and Their Uses | 141

Event Description

Win32_IP4RouteTableEvent The Win32_IP4RouteTableEvent class
represents IP route change events resulting
from the addition, removal, or modification
of IP routes on the computer system.

RegistryEvent The registry event classes allow you to sub-
scribe to events that involve changes in hive
subtrees, keys, and specific values.

RegistryKeyChangeEvent The RegistryKeyChangeEvent class
represents changes to a specific key. The
changes apply only to the key, not its subkeys.

RegistryTreeChangeEvent The RegistryTreeChangeEvent class
represents changes to a key and its subkeys.

RegistryValueChangeEvent The RegistryValueChangeEvent class
represents changes to a single value of a spe-
cific key.

Win32_SystemTrace The SystemTrace class is the base class for
all system trace events. System trace events
are fired by the kernel logger via the event
tracing API.

Win32_ProcessTrace This event is the base event for process events.

Win32_ProcessStartTrace The ProcessStartTrace event class in-
dicates a new process has started.

Win32_ProcessStopTrace The ProcessStopTrace event class indi-
cates a process has terminated.

Win32_ModuleTrace The ModuleTrace event class is the base
event for module events.

Win32_ModuleLoadTrace The ModuleLoadTrace event class indi-
cates a process has loaded a new module.

Win32_ThreadTrace The ThreadTrace event class is the base
event for thread events.

Win32_ThreadStartTrace The ThreadStartTrace event class indi-
cates a new thread has started.

Win32_ThreadStopTrace The ThreadStopTrace event class indi-
cates a thread has terminated.

142 | Chapter 9: Selected Events and Their Uses

Event Description

Win32_PowerManagementEvent The Win32_PowerManagementEvent
class represents power management events
resulting from power state changes. These
state changes are associated with either the
Advanced Power Management (APM) or the
Advanced Configuration and Power Interface
(ACPI) system management protocols.

Win32_DeviceChangeEvent The Win32_DeviceChangeEvent class
represents device change events resulting
from the addition, removal, or modification
of devices on the computer system. This in-
cludes changes in the hardware configuration
(docking and undocking), the hardware state,
or newly mapped devices (mapping of a net-
work drive). For example, a device has
changed when a WM_DEVICECHANGE mes-
sage is sent.

Win32_SystemConfiguration
ChangeEvent

The Win32_SystemConfiguration
ChangeEvent is an event class that indi-
cates the device list on the system has been
refreshed, meaning a device has been added
or removed or the configuration changed.
This event is fired when the Windows mes-
sage “DevMgrRefreshOn<Computer-
Name>” is sent. The exact change to the de-
vice list is not contained in the message, and
therefore a device refresh is required in order
to obtain the current system settings. Exam-
ples of configuration changes affected are IRQ
settings, COM ports, and BIOS version, to
name a few.

Win32_VolumeChangeEvent The Win32_VolumeChangeEvent class
represents a local drive event resulting from
the addition of a drive letter or mounted drive
on the computer system (e.g., CD-ROM). Net-
work drives are not currently supported.

Selected Events and Their Uses | 143

CHAPTER 10

Standard PowerShell Verbs

Cmdlets and scripts should be named using a Verb-Noun syntax
—for example, Get-ChildItem. The official guidance is that,
with rare exception, cmdlets should use the standard Power-
Shell verbs. They should avoid any synonyms or concepts that
can be mapped to the standard. This allows administrators to
quickly understand a set of cmdlets that use a new noun.

NOTE
To quickly access this list (without the definitions), type
Get-Verb.

Verbs should be phrased in the present tense, and nouns
should be singular. Tables 10-1 through 10-6 list the different
categories of standard PowerShell verbs.

Table 10-1. Standard Windows PowerShell common verbs

Verb Meaning Synonyms

Add Adds a resource to a container or attaches an
element to another element

Append, Attach,
Concatenate, Insert

Clear Removes all elements from a container Flush, Erase, Release,
Unmark, Unset, Nul-
lify

Close Removes access to a resource Shut, Seal

145

Verb Meaning Synonyms

Copy Copies a resource to another name or container Duplicate, Clone,
Replicate

Enter Sets a resource as a context Push, Telnet, Open

Exit Returns to the context that was present before
a new context was entered

Pop, Disconnect

Find Searches within an unknown context for a
desired item

Dig, Discover

Format Converts an item to a specified structure or
layout

Layout, Arrange

Get Retrieves data Read, Open, Cat,
Type, Dir, Obtain,
Dump, Acquire,
Examine, Find,
Search

Hide Makes a display not visible Suppress

Join Joins a resource Combine, Unite, Con-
nect, Associate

Lock Locks a resource Restrict, Bar

Move Moves a resource Transfer, Name, Mi-
grate

New Creates a new resource Create, Generate,
Build, Make, Allocate

Open Enables access to a resource Release, Unseal

Pop Removes an item from the top of a stack Remove, Paste

Push Puts an item onto the top of a stack Put, Add, Copy

Redo Repeats an action or reverts the action of an
Undo

Repeat, Retry, Revert

Remove Removes a resource from a container Delete, Kill

Rename Gives a resource a new name Ren, Swap

Reset Restores a resource to a predefined or original
state

Restore, Revert

Select Creates a subset of data from a larger data set Pick, Grep, Filter

146 | Chapter 10: Standard PowerShell Verbs

Verb Meaning Synonyms

Search Finds a resource (or summary information
about that resource) in a collection (does not
actually retrieve the resource but provides in-
formation to be used when retrieving it)

Find, Get, Grep,
Select

Set Places data Write, Assign, Con-
figure

Show Retrieves, formats, and displays information Display, Report

Skip Bypasses an element in a seek or navigation Bypass, Jump

Split Separates data into smaller elements Divide, Chop, Parse

Step Moves a process or navigation forward by
one unit

Next, Iterate

Switch Alternates the state of a resource between
different alternatives or options

Toggle, Alter, Flip

Unlock Unlocks a resource Free, Unrestrict

Use Applies or associates a resource with a context With, Having

Watch Continually monitors an item Monitor, Poll

Table 10-2. Standard Windows PowerShell communication verbs

Verb Meaning Synonyms

Connect Connects a source to a destination Join, Telnet

Disconnect Disconnects a source from a destination Break, Logoff

Read Acquires information from a nonconnected
source

Prompt, Get

Receive Acquires information from a connected source Read, Accept, Peek

Send Writes information to a connected destination Put, Broadcast, Mail

Write Writes information to a nonconnected desti-
nation

Puts, Print

Table 10-3. Standard Windows PowerShell data verbs

Verb Meaning Synonyms

Backup Backs up data Save, Burn

Standard PowerShell Verbs | 147

Verb Meaning Synonyms

Checkpoint Creates a snapshot of the current state of data
or its configuration

Diff, StartTransaction

Compare Compares a resource with another resource Diff, Bc

Compress Reduces the size or resource usage of an item Zip, Squeeze, Archive

Convert Changes from one representation to another
when the cmdlet supports bidirectional con-
version or conversion of many data types

Change, Resize, Re-
sample

Convert
From

Converts from one primary input to several
supported outputs

Export, Output, Out

ConvertTo Converts from several supported inputs to one
primary output

Import, Input, In

Dismount Detaches a name entity from a location in a
namespace

Dismount, Unlink

Edit Modifies an item in place Change, Modify,
Alter

Expand Increases the size or resource usage of an item Extract, Unzip

Export Stores the primary input resource into a back-
ing store or interchange format

Extract, Backup

Group Combines an item with other related items Merge, Combine,
Map

Import Creates a primary output resource from a
backing store or interchange format

Load, Read

Initialize Prepares a resource for use and initializes it to
a default state

Setup, Renew,
Rebuild

Limit Applies constraints to a resource Quota, Enforce

Merge Creates a single data instance from multiple
data sets

Combine, Join

Mount Attaches a named entity to a location in a
namespace

Attach, Link

Out Sends data to a terminal location Print, Format, Send

Publish Make a resource known or visible to others Deploy, Release,
Install

148 | Chapter 10: Standard PowerShell Verbs

Verb Meaning Synonyms

Restore Restores a resource to a set of conditions that
have been predefined or set by a checkpoint

Repair, Return, Fix

Save Stores pending changes to a recoverable store Write, Retain, Sub-
mit

Sync Synchronizes two resources with each other Push, Update

Unpublish Removes a resource from public visibility Uninstall, Revert

Update Updates or refreshes a resource Refresh, Renew,
Index

Table 10-4. Standard Windows PowerShell diagnostic verbs

Verb Meaning Synonyms

Debug Examines a resource, diagnoses operational
problems

Attach, Diagnose

Measure Identifies resources consumed
by an operation or retrieves statistics about a
resource

Calculate, Deter-
mine, Analyze

Ping Determines whether a resource is active and
responsive (in most instances, this should be
replaced by the verb Test)

Connect, Debug

Repair Recovers an item from a damaged or broken
state

Fix, Recover, Rebuild

Resolve Maps a shorthand representation to a more
complete one

Expand, Determine

Test Verify the validity or consistency of a resource Diagnose, Verify,
Analyze

Trace Follow the activities of the resource Inspect, Dig

Table 10-5. Standard Windows PowerShell lifecycle verbs

Verb Meaning Synonyms

Approve Gives approval or permission for an item or
resource

Allow, Let

Assert Declares the state of an item or fact Verify, Check

Standard PowerShell Verbs | 149

Verb Meaning Synonyms

Complete Finalizes a pending operation Finalize, End

Confirm Approves or acknowledges a resource or
process

Check, Validate

Deny Disapproves or disallows a resource or process Fail, Halt

Disable Configures an item to be unavailable Halt, Hide

Enable Configures an item to be available Allow, Permit

Install Places a resource in the specified location and
optionally initializes it

Setup, Configure

Invoke Calls or launches an activity that cannot be
stopped

Run, Call, Perform

Register Adds an item to a monitored or publishing
resource

Record, Submit,
Journal, Subscribe

Request Submits for consideration or approval Ask, Query

Restart Stops an operation and starts it again Recycle, Hup

Resume Begins an operation after it has been
suspended

Continue

Start Begins an activity Launch, Initiate

Stop Discontinues an activity Halt, End, Discon-
tinue

Submit Adds to a list of pending actions or sends for
approval

Send, Post

Suspend Pauses an operation, but does not
discontinue it

Pause, Sleep, Break

Uninstall Removes a resource from the specified loca-
tion

Remove, Clear, Clean

Unregister Removes an item from a monitored or pub-
lishing resource

Unsubscribe, Erase,
Remove

Wait Pauses until an expected event occurs Sleep, Pause, Join

150 | Chapter 10: Standard PowerShell Verbs

Table 10-6. Standard Windows PowerShell security verbs

Verb Meaning Synonyms

Block Restricts access to a resource Prevent, Limit, Deny

Grant Grants access to a resource Allow, Enable

Protect Limits access to a resource Encrypt, Seal

Revoke Removes access to a resource Remove, Disable

Unblock Removes a restriction of access to a resource Clear, Allow

Unprotect Removes restrictions from a protected
resource

Decrypt, Decode

Standard PowerShell Verbs | 151

Index

Symbols
!= (inequality) comparisons in

XPath, 94
" " (quotation marks, double)

custom DateTime format
specifier, 108

in format strings, 100
in strings, 7

(hash symbol)
beginning single-line

comments, 2
digit placeholder in format

strings, 99
$ (dollar sign)

$ args special variable, 56
$() (expression subparse), 2
$ErrorActionPreference

automatic variable, 67
$input special variable, 62
$LastExitCode automatic

variable, 64
$MyInvocation automatic

variable, 63
$_ (current object variable),

xvii
$_ (or $PSItem) variable, 63,

69

end-of-string (or line),
matching in regular
expressions, 85

in substitution patterns in
regular expressions,
86

in variable names, xv, 5
% (percent sign)

%= (modulus and
assignment), 19

%c format specifier, 108
%g format specifier, 105
%h format specifier, 105
%H format specifier, 106
in format strings, 99
modulus operator, 19

' ' (quotation marks, single)
custom DateTime format

specifier, 108
in format strings, 100
in strings, 7

() (parentheses)
(...) format specifier

(DateTime), 105
grouping in regular

expressions, 83
precedence control, 1

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

153

* (asterisk)
*= (multiplication and

assignment), 19
in regular expressions, 81
multiplication operator, 18
wildcard in cmdlet

parameters, xv
| (pipeline character), xvi
+ (plus sign)

+= (addition and assignment)
operator, 19

addition operator, 18
quantifier in regular

expressions, 81
separating array ranges from

explicit indexes, 15
, (comma)

number scaling format
specifier, 99

thousands separator in format
strings, 99

- (minus sign)
-= (subtraction and

assignment), 19
subtraction operator, 18

. (dot)
decimal point format

specifier, 99
dot notation, accessing

methods or properties,
xv

in property-access syntax, 16
invoking scripts with dot

operator, 54
matching any character except

newline in regular
expressions, 79

/ (slash)
/= (division and assignment),

19
date separator, 108
division operator, 19

0 (zero) format specifier, 98
: (colon), time separator in

DateTime format strings,
108

; (semicolon), section separator in
format strings, 100

<# #>, enclosing multiline
comments, 2

= (equals sign)
equality comparison in XPath,

94
? (question mark)

quantifier in regular
expressions, 81

@ (at sign)
@" and "@ enclosing here

strings, 8
@() (list evaluation), 2
@() array cast syntax, 12
attribute selector in XPath,

93
[] (square brackets)

accessing array elements, 14
accessing hashtable elements,

16
character classes in regular

expressions, 79
command parameter names

in, 55
filtering in XPath, 93
in array definitions, 13

\ (backslash) in regular
expressions, 90

^ (caret)
beginning-of-string (or line),

matching in regular
expressions, 85

negating character classes in
regular expressions,
79

| (pipeline character)
alternation in regular

expressions, 87

A
\A in regular expressions, 85
\a in regular expressions, 89
Access.Application object, 129
Active Directory

154 | Index

classes for, 117
working with in PowerShell,

xxiii
Add verb, 145
Add-Member cmdlet

selected member types
supported by, 48–49

Add-Type cmdlet
-AssemblyName parameter,

47
administrative tasks, xvi
ADSI (Active Directory Service

Interface), xxiii
Agent.Control object, 129
aliases for cmdlets, xiv
alternation constructs in regular

expressions, 87
and, logical and in XPath, 94
AppDomain class, 111
Approve verb, 149
argument array, 56
arithmetic operators, 17
array cast syntax @ (), 12
Array class, 110
ArrayList class, 111
arrays

accessing elements, 14
defining, 12
slicing, 15

-as (type conversion) operator,
24

assemblies
loading, 47

Assembly class, 111
AssemblyLoad event, 133
AssemblyResolve event, 133
Assert verb, 149
assignment, 9
assignment operators, 19
associative arrays, 15
atomic zero-width assertions in

regular expressions, 85
auto-completion, cmdlets, xiv
AutoItX3.Control object, 129
AvailabilityChanged event, 138

B
\b in regular expressions, 86, 89
\B in regular expressions, 86
backreference constructs in

regular expressions, 88
Backup verb, 147
begin statement, 62
BigInt class, 11
binary numbers, 11
binary operators, 21

AND, 21
exclusive OR, 21
NOT, 22
OR, 21
shift left (-shl), 22
shift right (-shr), 22

binary split operator, 24
BinaryReader class, 112
BinaryWriter class, 112
Bitmap class, 114
block (multiline) comments, 2
Block verb, 151
Booleans, 6
break keyword in trap statements,

69
break statement, 37

specifying label with, 38
BreakpointUpdated event, 137
BufferedStream class, 112

C
C or c (currency) format specifier,

96
CancelKeyPress event, 134
capturing output of commands,

71
catch statement, 68
\cC in regular expressions, 90
CEnroll.CEnroll object, 129
certificate store, navigating, xxv
CertificateAuthority.Request

object, 129
Changed event, 136
character classes in regular

expressions, 79

Index | 155

character escapes in regular
expressions, 89

Checkpoint verb, 148
CIM (Common Information

Model), xxii
CIM_DataFile, 120
classes (.NET Framework)

learning about, 44
selected classes and uses, 109–

118
Active Directory, 117
collections and object

utilities, 110
database, 117
image manipulation, 114
input and output, 112
message queuing, 117
.NET Framework, 111
networking, 114
registry, 111
security, 113
transactions, 118
user interface, 114
utility classes, 109
Windows Management

Instrumentation
(WMI), 115

XML, 115
Clear verb, 145
Close verb, 145
cmdlet keywords in commands,

62
CmdletBinding attribute, 57
cmdlets, xiii–xv

aliases for, xiv
auto-completion for, xiv
checking possible results of,

xviii
defined, xiii
information about, xix
linking with pipelines, xvii
naming conventions for, xiii,

145
positional parameters for, xiv
in scripts, xx

standard PowerShell verbs,
145–151

wildcards in parameters, xv
collections and object utilities,

110
COM objects, xxiii

interacting with, 47
selected objects and their uses,

129–132
COMAdmin.COMAdminCatalo

g object, 129
command resolution,

customizing, 77
CommandLookupEventArgs, 78
CommandNotFoundAction, 77
commands

composable, xvii
DOS, in interactive shell, xi
PowerShell commands (see

cmdlets)
providing input to, 56

$MyInvocation automatic
variable, 63

argument array, 56
behavior customizations,

57
cmdlet keywords in

commands, 62
formal parameters, 57
Parameter attribute

customizations, 58
parameter validation

attributes, 59
pipeline input, 62

retrieving output from, 63
running, 53

dot-sourcing, 54
invoking, 53
parameters, 54

Unix, in interactive shell, xi
writing, 50

comments, 2
help content based on, 3, 64
in regular expressions (and

pattern matching), 89

156 | Index

Common Information Model (see
CIM)

communication, verbs for, 147
Compare verb, 148
comparison operators, 26

contains (-contains), 29
equality (-eq), 26
greater than (-gt), 27
greater than or equal (-ge), 26
in operator (-in), 27
less than (-lt), 27
less than or equal (-le), 28
like (-like), 28
negated contains (-

notcontains), 30
negated equality (-ne), 26
negated in (-notin), 27
negated like (-notlike), 29
negated match (-notmatch),

29
negated type (-isnot), 30
type operator (-is), 30

comparison value statements, 32
comparisons in XPath, 93
Complete verb, 150
Completed event, 136, 138
complex numbers, 12
Compress verb, 148
conditional statements, 30–34

if, elseif, and else, 30
switch, 31

-Confirm parameter, xviii
Confirm verb, 150
Connect verb, 147
Console class, 110
console settings, customizing, 73
constants, administrative

numeric, 10
constrained variables, 5
contains operator (-contains), 29
continue keyword in trap

statements, 69
continue statement, 39
Convert class, 110
Convert verb, 148
ConvertFrom verb, 148

ConvertTo verb, 148
Copy verb, 146
Created event, 136
CSharpCodeProvider class, 111
custom type extension files, 49
customization points for

PowerShell, 72
command resolution, 77
console settings, 73
profiles, 75
prompts, 76
tab completion, 77
user input, 77

D
\d in regular expressions, 80
\D in regular expressions, 81
d custom format specifier

(DateTime), 103
d format specifier (DateTime),

101
D format specifier (DateTime),

101
D or d (decimal) format specifier,

96
DATA evaluation (DATA { }), 2
data types

array elements, 13
.NET Framework

creating instances of types,
46

extending, 47
learning about, 44
shortcuts for names, 45

System.Type class, 111
data, PowerShell verbs for, 147
database classes, 117
DataReady event, 139
DataReceived event, 137
DataSet class, 117
DataTable class, 117
DateAdded event, 138
DateTime class, xvi, 109
DateTime formatting, 101–108

Index | 157

custom format strings, 103–
108

standard format strings, 101–
103

dd custom format specifier
(DateTime), 104

\ddd in regular expressions, 90
ddd custom format specifier

(DateTime), 104
dddd custom format specifier

(DateTime), 104
Debug class, 110
Debug verb, 149
DebuggerStop event, 137
decimal numbers, 11
default statement in switch

statements, 33
DeflateStream class, 113
Deleted event, 136
Deny verb, 150
diagnostics

events related to, 136, 139
PowerShell verbs for, 149

Directory class, 112
DirectoryInfo class, 112
DirectorySearcher class, 117
DirectoryServices class, 117
Disable verb, 150
Disconnect verb, 147
Dismount verb, 148
DisplaySettingsChanged event,

134
DisplaySettingsChanging event,

134
division operator (/), 19
Dns class, 114
do … while or do … until

statement, 36
documentation

.NET Framework, 44
WMI (Windows Management

Instrumentation), 119
dollar sign (see $, under Symbols)
DOS commands in interactive

shell, xi
dot (.) (see . (dot), under Symbols)

dot notation (.), accessing
methods or properties, xv

dot-sourcing, 54
DownloadDataCompleted event,

135
DownloadFileCompleted event,

135
DownloadProgressChanged

event, 135
DownloadStringCompleted

event, 135

E
E or e (exponential) format

specifier, 96
Edit verb, 148
Elapsed event, 136
else statement, 30
elseif statement, 30
Enable verb, 150
end statement, 62
Enter verb, 146
EntryWritten event, 136
Enum class, 110
Environment class, 110
equality operator (-eq), 26
$ErrorActionPreference

automatic variable, 67
ErrorDataReceived event, 137
ErrorReceived event, 137
errors, 66

nonterminating, 66
terminating, 67

escape sequences, 9
evaluation controls, 1
EventLog class, 110
EventRecordWritten event, 139
events

.NET Framework, 133–140
WMI, 140–143

Excel.Application object, 129
Excel.Sheet object, 130
Execution Policy, 53
$executionContext.SessionState.

InvokeCommand, 77

158 | Index

exit statement, 64
Exit verb, 146
Exited event, 137
Expand verb, 148
expanding strings, 7
Export verb, 148
expression subparse ($ ()), 2

F
\f in regular expressions, 89
f custom format specifier

(DateTime), 104
F custom format specifier

(DateTime), 105
f format specifier (DateTime),

101
F format specifier (DateTime),

101
F or f (fixed-point) format

specifier, 96
ff custom format specifier

(DateTime), 104
FF custom format specifier

(DateTime), 105
fff custom format specifier

(DateTime), 104
FFF custom format specifier

(DateTime), 105
ffff custom format specifier

(DateTime), 104
fffff custom format specifier

(DateTime), 104
ffffff custom format specifier

(DateTime), 105
fffffff custom format specifier

(DateTime), 105
FFFFFFF custom format specifier

(DateTime), 105
file class, 112
-file option in switch statements,

32
FileInfo class, 112
filesystem, navigating, xxiv
FileSystemSecurity class, 114
FileSystemWatcher class, 113

FillError event, 140
finally statement, 68
Find verb, 146
flow control statements, 37

break, 37
continue, 39

FlowLayoutPanel class, 114
for statement, 34
foreach -parallel statement, 41
foreach statement, 35
Foreach-Object cmdlet, 36
Form class, 114
format operator (-f), 23, 95
Format verb, 146
formatting commands, 69–71
formatting output, 69–71

custom formatting files, 71
FtpWebRequest class, 115
functions, writing, 50

G
\G in regular expressions, 86
g format specifier (DateTime),

101
G format specifier (DateTime),

102
G or g (general) format specifier,

97
GB constant, xvi
Get verb, 146
Get-Command cmdlet, xix, 54
Get-Help cmdlet, xix
Get-History cmdlet, xxi
Get-Member cmdlet, xix, 44
Get-Process cmdlet, xv
Get-Variable cmdlet, 6
Get-Verb cmdlet, 145
gg custom format specifier

(DateTime), 105
gigabytes (gb), 10
Grant verb, 151
greater than operator (-gt), 27
greater than or equal operator (-

ge), 26
Group verb, 148

Index | 159

grouping constructs in regular
expressions, 83

Guid class, 109
GZipStream class, 113

H
hashtables

accessing elements, 16
defining, 15

help, comment-based, 3, 64
here strings, 8
hexadecimal numbers, 11
hh custom format specifier

(DateTime), 105
HH custom format specifier

(DateTime), 106
Hide verb, 146
HNetCfg.FwMgr object, 130
HNetCfg.HNetShare object, 130
hotkeys for PowerShell, 73
HTMLFile object, 130
HttpUtility class, 115
HttpWebRequest class, 115

I
if statement, 30
image manipulation, classes for,

114
imaginary numbers, 12
Import verb, 148
in operator (-in), 27
InfoMessage event, 139
InfoPath.Application object, 130
Initialize verb, 148
inline comments in regular

expressions, 89
InlineScript keyword, 40
input

classes for, 112
customizing user input, 77

$ input special variable, 62
Install verb, 150
InstalledFontsChanged event,

134
instance methods, calling, 42

instance properties, 43
__InstanceCreationEvent class,

140
__InstanceDeletionEvent class,

140
__InstanceModificationEvent

class, 141
instances of types, creating, 46
interactive shell, xi–xiii

DOS commands in, xi
launching, xi
Unix commands in, xi
Windows tools in, xiii

interfaces, explicitly
implemented, calling
mehods on, 43

InternetExplorer.Application
object, 130

InvocationStateChanged event,
138

Invoke verb, 150
invoking commands, 53
ipconfig tool, xiii
-is (type) operator, 30
IsLeapYear() method, DateTime

class, xvi
-isnot (negated type) operator,

30
IXSSO.Query object, 130
IXSSO.Util object, 130

J
-join operator, 25
Join verb, 146

K
K custom format specifier

(DateTime), 106
keyboard shortcuts for

PowerShell, 73
Kill() method, Process object, xv
kilobytes (kb), 10

160 | Index

L
large numbers, 11
$LastExitCode automatic

variable, 64
LegitCheckControl.LegitCheck

object, 130
Length property, String object,

xv
less than operator (-lt), 27
less than or equal operator (-le),

28
lifecycle verbs, 149
like operator (-like), 28
Limit verb, 148
list evaluation (@()), 2
literal strings, 7
Lock verb, 146
logical operators, 19

AND, 20
exclusive OR (xor), 20
in XPath, 94
NOT, 20
OR, 20

lookahead assertions in regular
expressions, 84

lookbehind assertions in regular
expressions, 84

looping statements, 34–37
do … while or do … until, 36
for, 34
foreach, 35
while, 36

LowMemory event, 134
-lt (less than) operator, 27

M
m custom format specifier

(DateTime), 106
M custom format specifier

(DateTime), 106
M or m format specifier

(DateTime), 102
MailAddress class, 115
MailMessage class, 115
MakeCab.MakeCab object, 130

ManagementDateTimeConverter
class, 116

ManagementEventWatcher class,
116

ManagementObjectSearcher
class, 116

MAPI.Session object, 130
Marshal class, 111
Math class, 17, 109
MB constant, xvi
Measure verb, 149
megabytes (mb), 10
MemoryStream class, 112
Merge verb, 148
MessageQueue class, 117
Messenger.MessengerApp object,

130
methods, accessing, xv
Microsoft.FeedsManager object,

130
Microsoft.ISAdm object, 130
Microsoft.Update.AutoUpdate

object, 130
Microsoft.Update.Installer

object, 130
Microsoft.Update.Searcher

object, 130
Microsoft.Update.Session object,

131
Microsoft.Update.SystemInfo

object, 131
mm custom format specifier

(DateTime), 106
MM custom format specifier

(DateTime), 106
MMC20.Application object, 131
MMM custom format specifier

(DateTime), 107
MMMM custom format specifier

(DateTime), 107
modulus operator (%), 19
Mount verb, 148
Move verb, 146
Msft_WmiProvider_OperationE

vent class, 141

Index | 161

MSScriptControl.ScriptControl
object, 131

Msxml2.XSLTemplate object,
131

multidimensional arrays
jagged, 13
not jagged, 13

$MyInvocation automatic
variable, 63

N
\n in regular expressions, 90
N or n (number) format specifier,

97
namespaces, navigating, xxiv–

xxv
naming conventions, cmdlets and

scripts, 145
navigation

in XPath, 91
namespace, through

providers, xxiv
negated equality operator (-ne),

26
negated in operator (-notin), 27
negated like operator (-notlike),

29
negated type operator (-isnot),

30
.NET Framework, 42–50

accessing instance properties,
43

accessing static properties, 43
calling explicitly implemented

interface methods, 43
calling instance methods, 42
calling static methods, 42
creating instances of types,

46
extending types, 47
interacting with COM objects,

47
learning about types, 44

documentation, 44

selected classes and their uses,
109–118

selected events and their uses,
133–140

support for, xv, xx
type shortcuts, 45

NetworkAddressChanged event,
136

NetworkAvailabilityChanged
event, 136

NetworkCredential class, 114
networking, classes for, 114
New verb, 146
New-Variable cmdlet, 6
nonbacktracking subexpressions,

85
nonterminating errors, 66
not operator

logical negation in XPath, 94
-notcontains (negated contains)

operator, 30
notepad tool, xiii
-notin (negated in) operator, 27
-notlike (negated like) operator,

29
-notmatch (negated match)

operator, 29
numbers, 9

administrative numeric
constants, 10

assigning to variables, 9
hexadecimal and other bases,

11
imaginary and complex, 12
large, 11

numeric format strings in .NET
custom, 98
standard, 96

O
o format specifier (DateTime),

102
objects

COM, interacting with from,
47

162 | Index

current, referencing, xvii
deep integration in

PowerShell, xv
instance properties, accessing,

43
in interactive shell, xx
in scripts, xx
utility classes for, 110

octal numbers, 11
OdbcCommand class, 117
OdbcConnection class, 117
OdbcDataAdapter class, 117
OnChange event, 140
Open verb, 146
OpenReadCompleted event, 135
OpenWriteCompleted event,

135
operating system, 124
operators, 17–30

arithmetic, 17
binary, 21
comparison, 26
format (-f), 23
join, 25
logical, 19
replace, 23
split, 24
type conversion (-as), 24

or, logical or in XPath, 94
OrderedDictionary class, 110
Other format specifier

(DateTime), 108
Other in format strings, 100
Out verb, 148
Outlook.Application object, 131
OutlookExpress.MessageList

object, 131
output

capturing, 71
classes for, 112
formatting, 69–71

custom formatting files,
71

retrieving output from
commands, 63

OutputDataReceived event, 136

P
\p in regular expressions, 80
\P in regular expressions, 80
P or p (percent) format speficier,

97
PaletteChanged event, 134
Parallel/Sequence keywords, 41
Parameter attribute, 57

customizations, 58
parameter validation attributes,

59
parameters

command, 54
formal parameters, 57

positional, xiv
PasswordDeriveBytes class, 113
Path class, 112
petabytes (pb), 10
PinChanged event, 137
Ping verb, 149
pipeline character (|), xvi
pipeline input for commands, 62
pipeline output, 63
Pop verb, 146
positional parameters, for

cmdlets, xiv
PostCommandLookupAction, 77
PowerModeChanged event, 134
PowerPoint.Application object,

131
PowerShell, ix–x

cmdlets (see cmdlets)
interactive shell (see

interactive shell)
PowerShell.exe, xi
precedence control (()), 1
PreCommandLookupAction, 77
Process class, 110
Process object, xv
process statement, 62
profiles, 75
prompt, customizing, 76
properties

instance, accessing, 43
static, accessing, 43

Index | 163

Protect verb, 151
providers, xxiv–xxv
PSConsoleHostReadLine

function, 77
PSDefaultParameterValues

hashtable, 56
$PSItem variable, 63, 69
PSObject class, 109
Publish verb, 148
Publisher.Application obejct,

131
Push verb, 146
Push-Location command, xiii
pushd command, xiii

Q
quantifiers in regular expressions,

81

R
\r in regular expressions, 89
R or r (roundtrip) format specifier,

97
R or r format specifier

(DateTime), 102
Random class, 110
ranges of array elements

accessing, 14
slicing, 15

RDS.DataSpace object, 131
Read verb, 147
Receive verb, 147
Redo verb, 146
ReflectionOnlyAssemblyResolve

event, 133
Regex class, 110
Register verb, 150
registry

classes for, 111
events related to, 142
navigating, xxv

RegistryEvent class, 142
RegistryKeyChangeEvent class,

142
RegistrySecurity class, 114

RegistryTreeChangeEvent class,
142

RegistryValueChangeEvent class,
142

regular expressions, 79–90
alternation constructs, 87
atomic zero-width assertions,

85
backreference constructs, 88
character classes, 79
character escapes, 89
grouping constructs, 83
quantifiers, 81
substitution patterns, 86

Remove verb, 146
Rename verb, 146
Renamed event, 136
Repair verb, 149
replace operator, 23
Request verb, 150
Reset verb, 146
Resolve verb, 149
ResourceResolve event, 133
Restart verb, 150
Restore verb, 149
Resume verb, 150
return statement, 64
Revoke verb, 151
RowUpdated event, 139
RowUpdating event, 139

S
\s in regular expressions, 80
\S in regular expressions, 80
s custom format specifier

(DateTime), 107
s format specifier (DateTime),

102
SAPI.SpVoice object, 131
Save verb, 149
scientific notation, 99
scientific notation in format

strings, 99
scope, $SCOPE:variable, 6
script blocks, writing, 52

164 | Index

Scripting.FileSystemObject
object, 131

Scripting.Signer object, 131
Scriptlet.TypeLib object, 131
ScriptPW.Password object, 131
scripts

ad hoc development of, xxi
commands in, xx
naming conventions for, 145
writing, 50

Search verb, 147
SecureString class, 113
security

classes for, 113
standard PowerShell verbs for,

151
Select verb, 146
selection in XPath, 91
Send verb, 147
Sequence keyword, 41
SerialPort class, 115
SessionEnded event, 134
SessionEnding event, 134
SessionSwitch event, 134
Set verb, 147
SHA1 class, 113
SharePoint.OpenDocument

object, 132
Shell.Application object, 132
Shell.LocalMachine object, 132
Shell.User object, 132
Show verb, 147
single-line comments, 2
Skip verb, 147
slicing arrays, 15
SmtpClient class, 115
SoundPlayer class, 110
-split operator, 24
Split verb, 147
SQL, events related to, 139
SqlCommand class, 117
SqlConnection class, 117
SqlDataAdapter class, 117
SQLDMO.SQLServer object, 132
SqlRowsCopied event, 139

ss custom format specifier
(DateTime), 107

standard PowerShell verbs, 145–
151

Start verb, 150
StateChange event, 139
StateChanged event, 137, 138
StatementCompleted event, 139
static methods, calling, 42
static properties, 43
Step verb, 147
Stop verb, 150
Stop-Process cmdlet, xv

-WhatIf parameter, xviii
Stopwatch class, 110
Stream class, 112
StreamReader class, 112
StreamWriter class, 112
String class, 110
string formatting in .NET, 95–

100
custom numeric format

strings, 98
standard numeric format

strings, 96
StringBuilder class, 110
StringReader class, 112
strings, 7

escape sequences in, 9
here strings, 8
literal and expanding, 7

StringWriter class, 113
structured commands (see

cmdlets)
Submit verb, 150
substitution patterns in regular

expression replace, 86
Suspend verb, 150
switch statement, 31

options supported by, 32
Switch verb, 147
Sync verb, 149
System.Diagnostics.Process

object (see Process object)
System.Math class, 17, 109

Index | 165

System.Numerics.Complex class,
12

T
\t in regular expressions, 89
t custom format character

(DateTime), 107
t format specifier (DateTime),

102
T format specifier (DateTime),

102
tab completion, customizing, 77
TabExpansion function, 77
TcpClient class, 115
terabytes (tb), 10
terminating errors, 67
Test verb, 149
text selection, making easier, 73
TextReader class, 112
TextWriter class, 112
Thread class, 111
threading, events related to, 142
throw keyword, 67
time (see DateTime formatting)
TimeChanged event, 134
tokens, 1
Trace verb, 149
transactions, 118
trap statement, 68
TripleDESCryptoServiceProvider

class, 113
try, catch, and finally statements,

68
tt custom format specifier

(DateTime), 107
Type class, 111
type conversion operator (-as),

24
type operator (-is), 30
TypeResolve event, 133

U
u format specifier (DateTime),

102

U format specifier (DateTime),
103

\udddd in regular expressions,
90

Unblock verb, 151
UnhandledException event, 133
Uninstall verb, 150
Unix commands, running in

interactive shell, xi
Unlock verb, 147
Unprotect verb, 151
Unpublish verb, 149
Unregister verb, 150
Update verb, 149
Update-FormatData cmdlet, 71
Update-TypeData cmdlet, 50
UploadDataCompleted event,

135
UploadFileCompleted event, 135
UploadProgressChanged event,

136
UploadStringCompleted event,

135
UploadValues Completed event,

135
Uri class, 114
Use verb, 147
user input

commands requiring or
supporting, 54

customizing, 77
user interface, classes for, 114
UserPreferenceChanged event,

135
UserPreferenceChanging event,

135
utility classes, 109

V
\v in regular expressions, 89
variables, 5

dollar sign ($) preceding
names, xv

Verb-Noun syntax (cmdlets and
scripts), xiv, 145

166 | Index

verbs, 145–151
Vim.Application class, 132

W
\w in regular expressions, 80
\W in regular expressions, 80
Wait verb, 150
Watch verb, 147
WebClient class, 115
WellKnownSidType class, 113
-WhatIf parameter, xviii
Where-Object cmdlet, xvii, 93
while statement, 36
WIA.CommonDialog class, 132
wildcards in cmdlet parameters,

xv
Win32_BaseBoard class, 120
Win32_BIOS class, 120
Win32_BootConfiguration class,

120
Win32_CacheMemory class, 123
Win32_CDROMDrive class, 120
Win32_ComputerShutdownEve

nt class, 141
Win32_ComputerSystem class,

120
Win32_ComputerSystemEvent

class, 141
Win32_ComputerSystemProduct

class, 120
Win32_DCOMApplication class,

120
Win32_Desktop class, 120
Win32_DesktopMonitor class,

120
Win32_DeviceChangeEvent

class, 143
Win32_DeviceMemoryAddress

class, 120
Win32_Directory class, 121
Win32_DiskDrive class, 121
Win32_DiskPartition class, 125
Win32_DiskQuota class, 121
Win32_DMAChannel class, 121
Win32_Environment class, 121

Win32_Group class, 121
Win32_IDEController class, 122
Win32_IP4RouteTableEvent

class, 142
Win32_IRQResource class, 122
Win32_LoadOrderGroup class,

123
Win32_LogicalDisk class, 123
Win32_LogicalMemoryConfigur

ation class, 123
Win32_LogonSession class, 123
Win32_ModuleLoadTrace event

class, 142
Win32_ModuleTrace event class,

142
Win32_NetworkAdapter class,

124
Win32_NetworkAdapterConfigu

ration class, 124
Win32_NetworkClient class,

123
Win32_NetworkConnection

class, 124
Win32_NetworkLoginProfile

class, 123
Win32_NetworkProtocol class,

124
Win32_NTDomain class, 124
Win32_NTEventLogFile class,

124
Win32_NTLogEvent class, 124
Win32_OnBoardDevice class,

124
Win32_OperatingSystem class,

124
Win32_OSRecoveryConfiguratio

n class, 126
Win32_PageFileSetting class,

124
Win32_PageFileUsage class, 124
Win32_PerfRawData_PerfNet_S

erver class, 126
Win32_PhysicalMemoryArray

class, 123
Win32_PortConnector class, 125
Win32_PortResource class, 125

Index | 167

Win32_PowerManagementEvent
class, 143

Win32_Printer class, 125
Win32_PrinterConfiguration

class, 125
Win32_PrintJob class, 125
Win32_Process class, 125
Win32_Processor class, 120
Win32_ProcessStartTrace event

class, 142
Win32_ProcessStopTrace event

class, 142
Win32_ProcessTrace event class,

142
Win32_Product class, 125
Win32_QuickFixEngineering

class, 125
Win32_QuotaSetting class, 126
Win32_Registry class, 126
Win32_ScheduledJob class, 122
Win32_SCSIController class,

126
Win32_Service class, 126
Win32_Share class, 126
Win32_SoftwareElement class,

126
Win32_SoftwareFeature class,

127
Win32_SoundDevice class, 127
Win32_StartupCommand class,

127
Win32_SystemAccount class,

127
Win32_SystemConfigurationCh

angeEvent class, 143
Win32_SystemDriver class, 127
Win32_SystemEnclosure class,

127
Win32_SystemSlot class, 127
Win32_SystemTrace event class,

142
Win32_TapeDrive class, 127
Win32_TemperatureProbe class,

127
Win32_ThreadStartTrace event

class, 142

Win32_ThreadStopTrace event
class, 142

Win32_ThreadTrace event class,
142

Win32_TimeZone class, 128
Win32_UninterruptiblePowerSu

pply class, 128
Win32_UserAccount class, 128
Win32_VoltageProbe class, 128
Win32_VolumeChangeEvent

class, 143
Win32_VolumeQuotaSetting

class, 128
Win32_WMISetting class, 128
window size, adjusting, 73
Windows Management

Framework, x
Windows Management

Instrumentation (see
WMI)

Windows registry (see registry)
Windows tools, running in

interactive shell, xiii
WindowsBuiltInRole class, 113
WindowsIdentity class, 113
WindowsPrincipal class, 113
WMI (Windows Management

Instrumentation), xxii,
119–128

class categories and
subcategories, 119

classes, 116, 120–128
events, 140–143, 140–143

WMPlayer.OCX object, 132
Word.Application object, 132
Word.Document object, 132
workflow-specific statements, 40

foreach -parallel, 41
InlineScript, 40
Parallel/Sequence, 41

Write verb, 147
Write-Error cmdlet, 67
writing scripts, reusing

functionality, 50–52
WScript.Network object, 132
WScript.Shell object, 132

168 | Index

WSHController object, 132

X
X or x (hexadecimal) format

specifier, 98
\xdd in regular expressions, 90
XML, xxii, 16

classes for, 115
xor (exclusive OR) operator, 20
XPath, 91–94

comparisons, 93
navigation and selection, 91

Y
y custom format specifier

(DateTime), 107
Y or y format specifier

(DateTime), 103
yy custom format specifier

(DateTime), 107
yyy custom format specifier

(DateTime), 107
yyyy custom format specifier

(DateTime), 107
yyyyy custom format specifier

(DateTime), 107

Z
\Z in regular expressions, 86
\z in regular expressions, 86
z custom format specifier

(DateTime), 108
zz custom format specifier

(DateTime), 108
zzz custom format specifier

(DateTime), 108

Index | 169

About the Author
Lee Holmes is a developer on the Microsoft Windows
PowerShell team, and has been an authoritative source of in-
formation about PowerShell since its earliest betas. His vast
experience with Windows PowerShell enables him to integrate
both the “how” and the “why” into discussions. Lee’s involve-
ment with the PowerShell and administration community (via
newsgroups, mailing lists, and blogs) gives him a great deal of
insight into the problems faced by all levels of administrators
and PowerShell users alike.

Colophon
The animal on the cover of Windows PowerShell Pocket Refer-
ence, Second Edition, is the box turtle of the genus Terra-
pene. There are four species of box turtle, all of which are native
to North America. Even though different species of this turtle
can be found in distinct habitats, the box turtle is generally
found in moist areas, especially moist woodlands.

The box turtle has a very domed shell, the size of which varies
between species. The pattern on its shell also depends on the
species, with some having stripes and others having yellow or
brown spots. The box turtle is an omnivore that eats inverte-
brates and vegetation.

Like other turtles, once the box turtle reaches maturity, it has
a higher chance of surviving. Unless killed by common preda-
tors such as raccoons or rodents, this turtle will typically live
between 30 and 50 years, with some box turtles living even far
longer.

The cover image is from Dover Pictorial Images. The cover font
is Adobe ITC Garamond. The text font is Linotype Birka; the
heading font is Adobe Myriad Condensed; and the code font
is TheSansMono Condensed.

	Table of Contents
	Preface
	
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	A Guided Tour of Windows PowerShell
	Introduction
	An Interactive Shell
	Structured Commands (Cmdlets)
	Deep Integration of Objects
	Administrators as First-Class Users
	Composable Commands
	Techniques to Protect You from Yourself
	Common Discovery Commands
	Ubiquitous Scripting
	Ad Hoc Development
	Bridging Technologies
	Namespace Navigation Through Providers
	Much, Much More

	Chapter 1. PowerShell Language and Environment
	Commands and Expressions
	Comments
	Help Comments
	Variables
	Booleans
	Strings
	Literal and Expanding Strings
	Here Strings
	Escape Sequences

	Numbers
	Simple Assignment
	Administrative Numeric Constants
	Hexadecimal and Other Number Bases
	Large Numbers
	Imaginary and Complex Numbers

	Arrays and Lists
	Array Definitions
	Array Access
	Array Slicing

	Hashtables (Associative Arrays)
	Hashtable Definitions
	Hashtable Access

	XML
	Simple Operators
	Arithmetic Operators
	Logical Operators
	Binary Operators
	Other Operators

	Comparison Operators
	Conditional Statements
	if, elseif, and else Statements
	switch Statements

	Looping Statements
	for Statement
	foreach Statement
	while Statement
	do … while Statement/do … until Statement
	Flow Control Statements
	break
	continue

	Workflow-Specific Statements
	InlineScript
	Parallel/Sequence
	foreach -parallel

	Working with the .NET Framework
	Static Methods
	Instance Methods
	Explicitly Implemented Interface Methods
	Static Properties
	Instance Properties
	Learning About Types
	The Get-Member cmdlet
	.NET Framework documentation

	Type Shortcuts
	Creating Instances of Types
	Interacting with COM Objects
	Extending Types
	The Add-Member cmdlet
	Custom type extension files

	Writing Scripts, Reusing Functionality
	Writing Commands
	Writing scripts
	Writing functions
	Writing script blocks

	Running Commands
	Invoking
	Dot-sourcing
	Parameters

	Providing Input to Commands
	Argument array
	Formal parameters
	Command behavior customizations
	Parameter attribute customizations
	Parameter validation attributes
	Pipeline input
	Cmdlet keywords in commands
	$MyInvocation automatic variable

	Retrieving Output from Commands
	Pipeline output
	Return statement
	Exit statement

	Help Documentation

	Managing Errors
	Nonterminating Errors
	Terminating Errors

	Formatting Output
	Custom Formatting Files

	Capturing Output
	Common Customization Points
	Console Settings
	Adjust your window size
	Make text selection easier
	Use hotkeys to operate the shell more efficiently

	Profiles
	Prompts
	Tab Completion
	User Input
	Command Resolution

	Chapter 2. Regular Expression Reference
	Chapter 3. XPath Quick Reference
	Chapter 4. .NET String Formatting
	String Formatting Syntax
	Standard Numeric Format Strings
	Custom Numeric Format Strings

	Chapter 5. .NET DateTime Formatting
	Custom DateTime Format Strings

	Chapter 6. Selected .NET Classes and Their Uses
	Chapter 7. WMI Reference
	Chapter 8. Selected COM Objects and Their Uses
	Chapter 9. Selected Events and Their Uses
	Chapter 10. Standard PowerShell Verbs
	Index

